• Title/Summary/Keyword: Driven cavity flow

Search Result 100, Processing Time 0.022 seconds

A Study on Numerical Adaptive Grid Generation for Incompressible Flow (비압축성유동을 위한 수치적응 격자생성에 관한 연구)

  • 이주희;이상환;윤준용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2237-2248
    • /
    • 1995
  • In incompressible flow which has multi-length scale, it has a very important effect which dependent variables are used for adaptive grid generation. Among many length scales in incompressible flow, the dependent variables used for the adaptive grid generation should be able to represent the feature of the concerned system. In this paper, by using vorticity and stream function, in addition to velocity components, the smoother and more stable grid generation is possible and these four flow properties represent each scale. The adaptive grid generation for a lid-driven cavity flow with $N_{re}$ =3200 using four flow properties such as velocity components, vorticity, stream function is performed, and the usefulness of using vorticity and stream function as the indicator for adaptive grid generation is shown.

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

Nodeless Variables Finite Element Method and Adaptive Meshing Teghnique for Viscous Flow Analysis

  • Paweenawat Archawa;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1730-1740
    • /
    • 2006
  • A nodeless variables finite element method for analysis of two-dimensional, steady-state viscous incompressible flow is presented. The finite element equations are derived from the governing Navier-Stokes differential equations and a corresponding computer program is developed. The proposed method is evaluated by solving the examples of the lubricant flow in journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incorporated to improve the solution accuracy and, at the same time, to reduce the analysis computational time. The efficiency of the combined adaptive meshing technique and the nodeless variables finite element method is illustrated by using the example of the flow past two fences in a channel.

Multiple steady state solutions in a two dimensional cavity flow (2차원 캐비티 유동에서 다중 정상 해에 관한 연구)

  • Cho Ji Ryong;Hong Sang Pyo;Kim Geun Oh;Kim Yun Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.127-138
    • /
    • 1999
  • In this study steady state solutions of cavity flows driven by two moving walls are studied. The north and east walls of the cavity are movable where as the remaining two walls are fixed in space. Numerical experiments for three different driving schemes for moving walls are done at two different Reynolds numbers of Re=40 and 400. The first scheme is to accelerate north and east walls simultaneously. In the second one, the north wall is started first and the east wall is accelerated later. In the third one the east wall starts first. It is usually expected that all these three cases yield the same steady state solution after sufficiently long time. However, present numerical experiments show that such a usual belief is valid only when the Reynolds number is low enough (Re=40). At higher Reynolds number (Re=400), the flow develops to three different steady states depending on the history of the boundary condition change.

  • PDF

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

Hybrid-QUICK Scheme Using Finite-Volume Method

  • Choi, Jung-Eun
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.57-67
    • /
    • 1996
  • The formulation for hybrid-QUICK scheme of convective transport terms in finite-volume calculation procedure is presented. Source terms are modified to apply the hybrid-QUICK scheme. Test calculations are performed for wall-driven cavity flow at Re=$10_2$, $10_3$, and $10_4$. These include the evaluation of boundary conditions approximated by third-order finite difference scheme. The stable and converged solutions are obtained without unsteady terms in the momentum equations. The results using hybrid-QUICK scheme show no difference with those using hybrid scheme at low Re ($=10_2$) and are better at higher Re ($10_3$, and $10_4$).

  • PDF

A Research on the PIV Algorithm Using Image Coding (영상코드화 기법을 이용한 PIV 알고리듬에 대한 연구)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.153-160
    • /
    • 2000
  • A Particle Image Velocimetry(PIV) algorithm is developed to analyze whole flow field both qualitatively and quantitatively. The practical use of PIV requires the use of fast, reliable, computer-based methods for tracking numerous particles suspended in a flow field. The TSS, NTSS, FFT-Hybrid, which are developed in the area of image compression and coding, are introduced to develop fast vector search algorithm. The numerical solution of the lid-driven cavity flow by the ADI algorithm with the Wachspress Formula is introduced to produce synthetic data for the validation of the tracking algorithms. The algorithms are applied to image data of real flow experiments. The comparisons in CPU time and mean error show, with a small loss of accuracy, CPU time for tracking is reduced considerably.

An Incompressible Flow Computation by a Hierarchical Iterative Preconditioning (계층적 반복의 예조건화에 의한 비압축성 유동 계산)

  • KIM JIN WHAN;JEONG CHANG-RYUL
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.11-18
    • /
    • 2003
  • In two-dimensional incompressible flows, a preconditioning technique called Hierarchical Iterative Procedure (HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint hence, achieving an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared (CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper and efficient iterative procedure for higher order finite element formulation has not been available, thus far. The numerical results by the present HIP for the lid driven cavity flow showed the present procedure to be stable, very efficient, and useful in flow analyses, in conjunction with hierarchical elements.

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

An Incompressible Flow Computation by a Hierarchical Iterative Preconditioning (계층적 반복의 예조건화에 의한 비압축성 유동 계산)

  • Kim J. W.;Jeong C. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.91-98
    • /
    • 2004
  • In two dimensional incompressible flows, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a stabilized finite element formulation. The stabilization has been peformed by a modified residual method proposed by Illinca et. al.[3]. The stabilization which is necessary to escape from the LBB constraint renders an equal order formulation. In this paper, we increased the order of interpolation whithin an element up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flow showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

  • PDF