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Nodeless Variables Finite Element Method and Adaptive
Meshing Teghnique for Viscous Flow Analysis

Archawa Paweenawat, Pramote Dechaumphai®

Mechanical Engineering Department, Chulalongkorn University,
Bangkok 10330, Thailand

A nodeless variables finite element method for analysis of two-dimensional, steady-state
viscous incompressible flow is presented. The finite element equations are derived from the

governing Navier-Stokes differential equations and a corresponding computer program is

developed. The proposed method is evaluated by solving the examples of the lubricant flow in

journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incor-

porated to improve the solution accuracy and, at the same time, to reduce the analysis computa-
tional time. The efficiency of the combined adaptive meshing technique and the nodeless varia-
bles finite element method is illustrated by using the example of the flow past two fences in a

channel.
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1. Introduction

The finite element method has been widely
and successfully used as a tool for analyzing both
the solid mechanics and heat transfer problems.
However, its application in the field of fluid dy-
namics is still under development and is limited,
because the method has encountered some diffi-
culties arisen from the nature of the governing
Navier-Stokes differential equations (Zienkiewicz
and Taylor, 2000). This is mainly due to the fact
that the derivative terms of the velocity compo-
nents in the momentum equations are one order
higher than those of the pressure. The order of
the finite element interpolation functions for the
velocity components is thus required to be one
order higher than that of the pressure to assure
the solution’s stability (Patankar, 1980; Chen
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and Han, 2000 Schafer and Teschauer, 2001).
In addition, the non-linearity nature of the
Navier-Stokes equations also poses difficulty in
the analysis. An iterative computational proce-
dure is needed to obtain the flow solution. Solv-
ing such the fluid problems thus normally re-
quires larger computer memory and computation-
al time as compared to those for the solid me-
chanics and heat transfer problems.

In the past, the six-node triangular elements
were generally employed for the low- speed vis-
cous flow analysis in arbitrary two-dimensional
geometry. The mixed element interpolation func-
tions were selected such that the interpolation func-
tions for the velocity components are one order
higher than those for the pressure (Yamada et al.,
1975 ; Kawahara et al., 1976). The use of the six-
node elements requires extra effort for generating
the finite element meshes and their related element
data as compared to the regular three-node ele-
ments (Dechaumphai and Sikkhabandit, 2000).
Furthermore, additional difficulty arises if both
the fluid and the solid regions are to be solved

‘ together simultaneously as in the interdisciplin-

ary problem (Wansophark et al., 2005). The finite
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Fig. 1 Modeling incompatibility from using the six-node triangular elements in the fluid region for

interdisciplinary fluid/solid problem

element modeling incompatibility occurs because
the three-node triangular elements are normally
used in the solid region, while the six-node ele-
ments are required in the fluid region for the
fluid analysis as highlighted in Fig. 1(a). Devel-
opment of an alternative finite element method
for the flow analysis using the three-node trian-
gular elements, as shown in Fig. 1(b) for fluid/
solid modeling compatibility, is thus needed. There-
fore, in this paper, the finite element method for
the analysis of viscous incompressible flow using
the regular three-node elements with nodeless
variables is developed. The performance of the
new finite element and the proposed method is
evaluated by the analyzing several the viscous
incompressible flow problems.

In addition, an adaptive meshing technique
(Limtrakarn and Dechaumphai, 2004) is also im-
plemented. The technique generates small clus-
tered elements in the regions of high changes in
solution gradients to improve solution accuracy.
Larger elements are generated in the other regions
where the solutions are fairly uniform to reduce
the number of unknowns and thus the analysis
computational time. The efficiency of the com-
bined adaptive meshing technique and the node-
less variables finite element method is demon-
strated by the problem of the flow past two fences
in a channel.

2. Governing Equations

The governing differential equations for the vis-
cous incompressible flow problems consist of the
Navier-Stokes equations and the continuity equa-
tion. The two-dimensional steady-state Navier-

Stokes equations, which represent the conserva-
tion of momentums in the x and y-directions,
can be written as,

p(u(a—uﬁ-val)—@—(fi—@:O (1a)

ox dy ox oy
v 0v\_ 0y _00y_
( <ax+ 8y> ox oy 0 (16)

where p is the density : z and v are velocity com-
ponents in the x and y-directions, respectively.
For the Newtonian fluid, the normal and tangen-
a) and (Ib) above
are written in terms of the pressure, p, and the

tial stress components in Egs. (1

velocity gradients as,

ov=—pt 25 0 (2a)
o= —p+ 2% (2b)
Txyzfyx:/l(g_z'f'g_z) (ZC)

where s is the viscosity. The Navier-Stokes equa-
tions can then be rewritten in the form of non-
linear partial differential equations of second or-
der as,

oo G o)l Gl 5t )+ gm0 oo

o(wlrrody)u( G+ 5e) =0 v

The above two equations, together with the con-

tinuity equation representing the conservation of
mass,
v

W_l_— (3C)
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are to be solved for the unknowns of the velocity
components and the pressure.

These differential equations, Egs. (3a) ~ (3¢),
are to be solved with appropriate boundary con-
ditions which are either specifying velocity com-
ponents along edge S,

u(x,y) =w(x,) (42)
v(x,y) =nlx,y) (4b)

or surface tractions along edge S,
Te=0xl+tom (5a)
Ty=rtol+oym (5b)

where [/ and e are the direction cosines of the
unit vector normal to the boundary edge.

3. Finite Element Formulations

The Galerkin finite element method is applied
for deriving the finite element equations from the
governing differential equations, Egs. (3a) ~ (3¢).
The computational domain is discretized using
the regular three-node finite elements. These three-
node finite elements assume the element velocity
component and the pressure distributions in the
form,

p(x,y) =H:(x,y) p: (6a)
u(x,y) =H;(x,y) ui+G;{x,y) uf (6b)
vix,y) =H:(x,y) vi+G;(x,y) v} (6c)

where %} and v}, 1=1,2,3, are the velocity com-
ponents at the three nodes, and p; is the nodal
pressure. The « and v/, j=1,2,3, are nodeless
variables related to velocity components that do
not need their locations as required by the actual
nodes. The element interpolation functions, H,
are linear in the form,

H=L, (73)
H2=Lz (7b)
HsZLs (70)
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Nodeless Variable FE
w=Hu +Gou]

Compatibility
is preserved
between elements

Conventional FE
u;=Hul

Fig. 2 Meaning and distribution of the nodeless
variable finite elements with the preserved
compatibility condition along element inter-
face

and the nodeless variable interpolation functions,
G;, are quadratic in the form,

Gi1=4L,Ls (8a)
Ge=4L\L; (8b)
Gs=4L.L, <8C)

where L; are the area coordinates (Zienkiewicz
and Taylor, 2000). Distributions of these func-
tions together with the nodeless variables as com-
pared to those for the conventional 3-node ele-
ment are shown in Fig. 2. The figure also shows
that the compatibility condition is always pre-
served along the element interfaces to ensure the
solution convergence. For simplicity in the deri-
vation of the finite element equations presented
later, the element velocity component distribu-
tions in Eqgs. (6b) and (6¢c) are first written in the
form,

w(x,y) =N;(x,y) u: (9a)
v(x,y) =N;(x,) v (9b)

where =1 to 6. The Bubnov-Galerkin finite
element method is applied to the differential Egs.
(3a) ~ (3c) for deriving the finite element equa-
tions by using the element interpolation functions
above. The finite element equations in form of
integrals over the element domain A and the
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element edge S; are,

i
/A Nitt tdA+ /A N wupdA— [ NispdA

2 (N rd A2 [ NouydA (10a)
o JA pJ4
i3 . —_ .
+4 [ Now.d /S NiT:dS
[Nt v.dA+ [New v,dA —L (N.paA
A A pJa "
+ L (N yd A+ [N, 1dA (10b)
0J4 ©0J4
2 _
2 [NuvadA= fs N.TdS
[He(untv,) dA=0 (10c)

Then, by the substitution of Egs. (9a) and (9b)
into equations (10a) and (10b), the finite element
equations can be written in form of the tensor

notations as,

Kaprettgtty + Kapyostty— Hapxpu

11
+ Sa,sxxu,q + Saﬂxyv,sz an ( a)

Koprrttstty+ Kaprsvs0y— HapsDp

I1b
+ Sapvxttst Sapyyvp= Qo> (11b)

Hp,,;xu,e'i‘ Hﬂ;w’l)g:() ( 1 10)

where the coefficients in these equations are de-
fined by,

Kapre= | NeNsNy:dA (12a)
Kupp= [ NaNsN, ,dA (12b)
Ha/\x=% [ NoHidA (120)
Hoir=— [ NesHidA (124)

_2p y
Sopme=21 [ NeNsdA+ ; fA NasNandA  (12€)

Sa,m=% | NasNp<dA (126)

Sapr=s [ No.sNosdA (12¢)

& 21
S =L [N sNasd A+22 [NosNosd A (120)

Qur= fs N, TdS (120)

Qo= [NTdS (12))

4. Computational Procedure

The finite element equations, as shown in Egs.
(11a) ~(11c) are non-linear to be solved by an
iterative method. The Newton-Raphson iterative
method is selected in this study. The method re-
quires writing the unbalance values in the form,

Fax :Kaﬁyxuﬂuy + Kaﬁr;vv,euy

13
—%Haxxp/\ + Sesxxttpt Sapests— Qax (132)
Fay = Ka,eyxu,el)y + Ka,ewv,avy
13b
—%Hawﬁx + Saprxttgt Sapyyvp— Qay< )
Fquppr{B+pryUp (130)

Then application of the method leads to a set of
algebraic equations with incremental unknowns
in the form,

Gaﬂx Laﬂy _Ha/lx Auﬂ F‘ax
La,gx Gaﬂy _Ha/\y AU,B = Fay (14)
Hppx Hgv 0 Apg Fu

where the coefficients in the above equations. are,
Gapx=Kapyrtty+ Kampstty+ Karsvy+ Sapex (15a)
Gaps=Kaprsvy+ Karprvy+ Kargxtty+ Saprs (15b)
L opr=Kagyxty+ Sapsx (15¢)

L aps=Kapyytty+ Sapx» (15d)

These coefficients which are in form of element
matrices can be evaluated in closed-form ready
for computer programming. Details of the deriva-
tion for these element matrices are omitted herein
for brevity. In these Eqgs. (15a) ~ (15d), %, and v,
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are the values of the velocity components for
both the actual nodes and the nodeless variables
at the {™ iteration. The iteration process is ter-
minated if the change in percentage of the overall
errors of the nodal unknowns from the previous
iteration is less than the specified value.

5. Adaptive Meshing Technique

The idea behind the adaptive meshing tech-
nique (Limtrakarn and Dechaumphai, 2004) pre-
sented herein is to construct a new mesh based
on the solution obtained from the previous mesh.
The new mesh will consist of small elements in
the regions with large change in solution gradi-
ents and large elements in the other regions where
the change in solution gradients is small. To de-
termine proper element sizes at different locations
in the flow field, the solid-mechanics concept
for determining the principal stresses from a given
state of stresses at a point is employed. Since
small elements are needed in the regions of com-
plex flow behavior, thus the velocity distribution
can be used as an indicator in the determination
of proper element sizes.

To determine proper element sizes, the second
derivatives of the flow velocity with respect to the
global coordinates x and y are first computed,

FV FV

2 oxd
el
oxdy 0y?

where 1V is the magnitude of the two velocity
components # and v,

V=vui+v* (17)

The principal quantities in the principal direc-
tions X and Y where the cross derivatives vanish,
are then determined,

e’V

0

X7

, 2V (18)
g

The magnitude of the larger principal quantity is
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then selected,

>’V
Y?

*V
0X?

s

/1=max<

) (19)

This value is used to compute proper element size
h at that location from the conditions,

WEA=constant= A&nAmax (20)

where /imin is the specified minimum element size,
and Amax is the maximum principal quantity for
the entire model.

6. Examples

In this section, three examples are presented.
The first two examples are used to verify and eval-
uate the nodeless variables finite element method
with exact solution and solution from other nu-
merical method. The third example is used to de-
monstrate the capability of the combined nodeless
variable finite element method and the adaptive
meshing technique to improve the analysis solu-
tion accuracy.

6.1 Lubricant flow in journal bearing

The problem statement of the lubricant flow in
journal bearing is shown in Fig. 3. The problem
can be simplified as illustrated in the Fig. 4 if
the length L is much larger than the gap /4. The
figure shows the lower sliding pad moving at a
velocity U relative to the stationary pad inclined

Journal

i Computational domain

Fig. 3 Problem statement of lubricant flow in jour-

nal bearing
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at a small angle with respect to the sliding pad.
The small gap between the two pads is filled with
a lubricant. The exact solution of the velocity is
(Reddy and Gartling, 1994),

1 adp

u=7ﬂ—Wy(y—h)+U<l*%> en)

where
h=hot (he=ho) - (22)

and the exact solution for the pressure distributi-
on is,

P _ 6(x/L) (1~x/L) (1—he/ hy)
pUL/HS (1 ho/ho) [Y =1 —he/ho) x/ L]?

(23)
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Fig. 4 Computational domain for lubricant flow in

journal bearing
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Fig. 5 Finite element model and boundary condi-
tions of lubricant flow in journal bearing
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Nodeless Variables FE

0.0 . . . -
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u(0O)/U

Fig. 6 Comparison of velocity profiles along the left

boundary

In the computation, the values of k=2, k=1,
L=20, U=5, and p=10 are selected. The finite
element model as shown in Fig. 5 consists of
686 nodeless variables finite elements. Figures 6
and 7 show good agreement between the predicted
and the exact solutions for the velocity profiles
at the entrance and the exit of the computational
domain. Figure 8 also shows good comparison of
the predicted and the exact pressure distributions
along the lower boundary of the computational
model.

6.2 Lid-driven cavity flow

The problem of the flow circulation in a closed
cavity driven by a moving lid has been widely
used to validate new fluid computational methods.
The problem statement is illustrated in Fig. 9.
The flow circulation in a unit square cavity is
induced by a moving lid at the velocity of U=1
to the right. A finite element model, with a 50X
50 mesh discretization along the x and y direc-
tions, consisting of all the nodeless variable finite

1.0
0.8

vhy 06 Exact [10]

04 Nodeless Variables FE

0.0 £ 1 A
0.0 02 0.4 0.6 0.8 1.0

u(Ly)yU
Fig. 7 Comparison of velocity profiles along the

L

right boundary

1.0 r

0.8

0.6

PP

04 b Nodeless Variables FE

02 b Exact [10]

0‘0 i I L 1.

0.0 0.2 0.4 0.6 0.8 1.0

XL

Fig. 8 Comparison of pressure distributions along
the bottom boundary
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elements is shown in Fig. 10. The predicted ve-
locity vectors of the flow circulation behavior at

-
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Fig. 10 Finite element model of lid-driven cavity

flow problem
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Fig. 11 Predicted velocity vectors of lid-driven cav-
ity flow problem )

the Reynolds number of 400 are plotted in Fig.
11. Figure 12 shows good agreement of the ve-
tocity profiles along the cavity centered lines ob-
tained from the nodeless variables finite element
method and those presented Ref. (Ramaswamy
and Jue, 1991).

6.3 Flow past two fences in channel

The problem of a flow past two fences in a
channel is used to evaluate the performance of
the combined nodeless variables finite element
method and the adaptive meshing technique. The
problem statement of the flow past the two fences
in the channel with its geometry are shown in Fig.
13. Results of the flow behavior for this problem,
including the separationé behind the obstacles,
were obtained by experiment and presented in
Ref. (Durst et al., 1988).

The procedure of the combined nodeless vari-
ables finite element method and the adaptive
meshing technique starts from generating a crude
uniform mesh throughout the model as shown
in Figs. 14(a) ~ (c). The nodeless variables finite
element method is then employed to predict the
flow solution according to this first uniform mesh.
The flow solution shown in Figs. 14(d) ~ (f) is
then used, based on the adaptive meshing tech-
nique described in Section 5, to construct a new
mesh. This second mesh as shown in Figs. 15(a) ~
(¢} consists of clustered small elements in the
regions of high changes in the solution gradients.
Larger elements are, at the same time, generated
in the other regions where the flow solution is
fairly uniform. The nodeless variables finite ele-

1.0
E 05
i
3 o Nodeless Variables FE
400
>, -~ Ref[11]
3
2 .05
-1.0 L .

-0 05 00 05 10
w(x/L=0.5, y/Ly/ U
Fig. 12 Comparison of velocities of lid-driven cavi-
ty flow problem
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ment method is then performed using this second
mesh to produce a new flow solution as shown in
Figs. 15(d) ~ (f). This procedure of generating
new mesh and performing finite element com-
putation is repeated. Figure 16(a) shows the third
adaptive mesh. Small elements are clustered in
the upper left corner of both the left and the right

fences, as shown in Figs. 16(b)-(c), where the
fluid pressures change abruptly. The figure also
shows that larger elements are generated in the
other regions to reduce the computational time
and the computer memory requirement.

Small elements generated at the upper left cor-
ners of both the fences provide high solution ac-

not to scale

L=22H >

v e i 7 L LA
3 pae [ = 0.16H
H
A
h=0.48H
LLLLELL IR /+ A AL AL TR, X

‘—L;:SH‘J
- Ly=8H >

Fig. 13 Problem statement for flow past two fences in channel

(a) First adaptive finite element mesh
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(b) Detailed mesh around the left fence
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(d) Predicted pressure distribution

(e) Detailed pressure distribution around the left
fence

7
T < T 5 7
(f) Detailed pressure distribution around the right
fence

Fig. 14 First adaptive mesh and its solution for flow past two fences in channel problem
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Fig. 15 Second adaptive mesh and its solution for flow past two fences in channel problem
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Fig. 16 Third adaptive mesh and its solution for flow past two fences in channel problem
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not to scale

, 4
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— Nodeless Variables FE o Experiment [12]
Fig. 17 Comparative velocity profiles for flow past
two fences in channel

curacy as can be observed by the smooth pres-
sure contours in Figs. 16(d) ~ (f). The predicted
velocity profiles are compared with the experi-
mental data (Durst et al.,, 1988) in Fig. 17. The
figure shows good comparisons at different channel
locations, with flow separations captured near the
lower surface at x/H equals to 4.8 and 10.

7. Conclusions

The nodeless variables finite element method
for viscous incompressible flow analysis was pre-
sented. The nodeless variables were incorporated
into the standard three-node triangular elements
to increase the order of the velocity interpolation
functions. The nodeless variables finite elements
avoid the need for using the six-node triangular
elements normally employed to provide the analy-
sis solution stability. The use of the nodeless vari-
ables finite elements reduces the difficulty for gen-
erating the meshes and provides modeling com-
patibility for the interdisciplinary analysis of cou-
pled fluid/solid problems.

The nodeless variables finite element equations
were derived from the governing Navier-Stokes
differential equations. All finite element matrices
were derived in closed-form and a corresponding
computer program was developed. Two examples
with exact and numerical solutions were used to
validate the performance of the nodeless variables
finite element method. The method was also com-
bined with an adaptive meshing technique to fur-
ther increase the overall analysis performance.
The adaptive meshing technique generates small
clustered elements in the regions of high solu-

tion gradients to increase the solution accuracy.
Larger elements are generated in the other regions
to reduce the computational time as well as the
computer memory. The efficiency of the combined
adaptive meshing technique and the nodeless
variables finite element method was demonstrated
by using the example of a flow past two fences in
a channel.
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