Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D. (Faculty of Engineering and Surveying, University of Southern Queensland) ;
  • Tran-Cong, T. (Faculty of Engineering and Surveying, University of Southern Queensland)
  • Published : 2004.03.01

Abstract

The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

Keywords

References

  1. The meshless local Petrov-Galerkin(MLPG) method Atluri,S.N;S.Shen
  2. Finite element computational fluid mechanics Baker,A.J.
  3. Methods Appl. Mech. Engrg. v.139 Meshless methods; An overview and recent developments. Comput Belytschko,T.;Y.Krongauz;D.Organ;M.Fleming;P.Krysl https://doi.org/10.1016/S0045-7825(96)01078-X
  4. J. Rheol. v.38 no.1 Steady flows of viscoelastic fluids in axisymmetric abrupt contraction geometry: A comparison of numerical results Bernstein,B.;K.A.Feigl;E.T.Olsen https://doi.org/10.1122/1.550495
  5. Dynamics of polymeric liquids v.2 Bird,R.B;C.F.Curtiss;R.C.Armstrong;O.Hassager
  6. J. Non-Newt. Fluid Mech. v.84 Variance reduction methods for CONNFFESSIT-like simulations Bonvin,J;M.Picasso https://doi.org/10.1016/S0377-0257(98)00179-7
  7. J. Rheol. v.45 no.1 Calculation of free surface flows using CONNFFESSIT Cormenzana,J.;A.Ledda;M.Laso https://doi.org/10.1122/1.1333000
  8. Numerical simulation of non-Newtonian flow, Elsevier Crochet,M.J.;A.R.Davies;K.Walters
  9. Computational Mechanics v.23 Numerical integration of Galerkin weak form in meshfree methods Dolbow J.;T.Belytschko https://doi.org/10.1007/s004660050403
  10. Methods Appl. Mech. Engrg. v.139 An h-p adaptive method using clouds. Comput Duarte C.A;J.T.Oden https://doi.org/10.1016/S0045-7825(96)01085-7
  11. RAIRO Analyse Numeriques v.10 Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces Duchon,J.
  12. compt. and Math. Applic. v.43 no.3;5 Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary Fedoseyev,A.I;M.J.Friedman;E.J.Kansa https://doi.org/10.1016/S0898-1221(01)00300-5
  13. Macromolecules v.28 CONNFFESSIT approach for solving a two-dimensional viscoelastic fluid problem Feigl,K.;M.Laso;H.C.Oettinger https://doi.org/10.1021/ma00113a031
  14. chemistry and the natural sciences Handbook of stochastic methods for physics Gardiner,C.W
  15. Eng. Anal. with Boundary Elements v.18 Improved multiquadric approximation for partial differential equations Golberg,M.A.;C.S.Chen;S.R.Karur https://doi.org/10.1016/S0955-7997(96)00033-1
  16. J. Non-Newt. Fluid Mech. v.88 Modelling of viscoelastic lid driven cavity flow using finite element simulations Grillet,A.M.;B.Yang;B.Khomami;E.S.G.Shaqfeh https://doi.org/10.1016/S0377-0257(99)00015-4
  17. Neural networks: A comprehensive foundation Haykin,S.
  18. J. Comp phys. v.30 Finite element analysis of incompressible viscous flows by the penalty function formulation Hughes,T.J.R.;W.K.Liu;A.Brooks https://doi.org/10.1016/0021-9991(79)90086-X
  19. J. Non-Newt. Fluid Mech. v.70 Simulation of viscoelastic flows using Brownian Configuration fields Hulsen,M.A.;A.P.G.van Heel;B.H.A.A.van den Brule https://doi.org/10.1016/S0377-0257(96)01503-0
  20. J. Chem. Phys. v.113 Hydrodynamic interactions in long chain polymer: Application of the Chebyshev polynomial approximation in stochastic simulations Jendrejack,R.M.;M.D.Graham;J.J.de Pablo https://doi.org/10.1063/1.1305884
  21. Computers Math. Applic. v.19 no.8;9 Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-Ⅱ: Solutions to parabolic, hyperbolic and elliptic partial differential equations Kansa,E.J.
  22. Numerical solution of stochastic differential equations Kloeden,P.E;E.Platen
  23. Numerical solution of stochastic differential equations through computer experiments Kloeden,P.E.;E.Platen;H.Schurz
  24. J. Chem. Phys. v.113 Variance reduced Brownian simulation of a bead-spring chain under steady shear flow considering hydrodynamic interaction effects Kroger,M.;A.Alba Perez;M.Laso;H.C.Oettinger https://doi.org/10.1063/1.1288803
  25. Tech. Rep. 470, Dept. of Applied Mathematics A numerical study of some radial basis function based solution methods for elliptic PDEs Larsson,E.;B.Fornberg
  26. Dynamics of complex fluids: Proceedings of the second Royal Society Unilever IndoUK forum in material science and engineering Calculation of flows with large elongation components: CONNFFESSIT calculation of the flow of a FENE Fluid in a planar 10:1 contraction Laso,M;Adam,M.J.;Mashelkar R.A.;Pearson J.R.A.;Rennie A.R.
  27. J. Non-Newt. Fluid Mech. v.47 Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach Laso,M.;H.C.Oettinger https://doi.org/10.1016/0377-0257(93)80042-A
  28. AIChE Journal. v.43 no.4 2-D time-dependent viscoelastic flow calculations using CONNFFESSIT Laso,M.;M.picasso;H.C.Oettinger https://doi.org/10.1002/aic.690430404
  29. Flexible polymer chains dynamics in elongational flow: theory and experiment v.6 Calculation of flows with large elongation components: CONNFFESSIT calculation of the flow of a FENE fluid in a planar 10:1 contraction Laso,M.;M.Picasso;H.C.Oettinger;Nguyen,T.Q.;Kausch,H.H.
  30. Neural Networks. v.14 Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks Mai Duy,N.;T.Tran Cong https://doi.org/10.1016/S0893-6080(00)00095-2
  31. J. Chem. Phys. v.105 no.8 Variance reduced simulations of polymer dynamics Melchior,M.;H.C.Oettinger https://doi.org/10.1063/1.472186
  32. J. Non-Newt. Fluid Mech. v.32 Approximation error in finite element calculation of viscoelastic fluid flows Mendelson,M.A.;P.W.Yeh;R.A.Brown;R.C.Armstrong https://doi.org/10.1016/0377-0257(89)85036-0
  33. J. Non-Newt. Fluid Mech. v.12 Unsteady-state development of Plane Couette Flow for Viscoelastic Fluids Mochimaru Y. https://doi.org/10.1016/0377-0257(83)80034-2
  34. Recent advances in radial basis function networks Orr M.J.L.
  35. Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms Oettinger,H.C.
  36. J. Non-Newt. Fluid Mech. v.70 Brownian configuration fields and variance reduced CONNFFESSIT Oettinger,H.C.;B.H.A.A.van den Brule;M.A.Hulsen https://doi.org/10.1016/S0377-0257(96)01547-9
  37. Phys. Fluids v.9 no.11 Cavity flows of elastic liquids: Two-dimensional flows Pakdel,P.;S.H.Spiegelberg;G.H.McKinley https://doi.org/10.1063/1.869430
  38. J. Non-Newt. Fluid Mech. v.32 A purely hyperbolic model for unsteady viscoelastic flow Phelan,F.R;M.F.Malone;H.H.Winter https://doi.org/10.1016/0377-0257(89)85036-0
  39. J. Rheol v.46 Viscometric functions for Hookean dumbbells with excluded volume and hydrodynamic interaction Prabhakar,R.;J.R.Prakash https://doi.org/10.1122/1.1501924
  40. Methods Appl. Mech. Engrg. v.139 Smoothed particle hydrodynamics: some recent improvements and applications, Comput Randles P.W.;L.D.Libersky https://doi.org/10.1016/S0045-7825(96)01090-0
  41. J. Non-Newt. Fluid Mech. v.93 Linear stability and dynamics of viscoelastic flows using time-dependent stochastic simulation techniques Somasi M.;B.Khomami https://doi.org/10.1016/S0377-0257(00)00115-4
  42. Annual Review of Fluid Mechanics v.V34 Molecular orientation effects in viscoelasticity Suen J.K.C;Y.L.Joo;R.C.Armstrong;J.L.Lumley;S.H.Davis;P.Moin
  43. Eng. Anal. With Boundary Element v.26 BEM-NN Computation of generalized Newtonian flows Tran Canh,D.;T.Tran Cong https://doi.org/10.1016/S0955-7997(01)00085-6
  44. Korea-Australia Rheology Journal v.14 no.4 Computation of viscoelastic flow using neural networks and stochastic simulation Tran Canh,D.;T.Tran Cong
  45. Korea-Australia Rheology Journal, submit Meshless computation of 2D viscoelastic flows Tran Canh,D.;T.Tran Cong
  46. Engineering Analysis with Boundary Element v.26 BEM-RBF approach for visco-elastic flow analysis Tran Cong,T.;N.Mai Duy;N.Phan-Thien https://doi.org/10.1016/S0955-7997(02)00041-3
  47. Geophys. Astrophys. Fluid Dynamics v.55 A benchmark comparison of numerical methods for infinite Prandrl number thermal convection in two-dimensional Cartesian geometry Travis,B.J.;C.Anderson;J.Baumgardner;C.W.Gable;B.H.Hager;R.J.O'connell;P.Olson;A.Raefsky;G.Schubert
  48. Int. J. Numer. Meth. Engng. v.42 A numerical method for heat transfer problems using collocation and radial basis functions Zerroukat,M.;H.Power;C.S.Chen https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I
  49. Int. J. Numer. Meth. Engng. v.48 Explicit and implicit meshless methods for linear advection diffusion-type partial differential equations Zerroukat,M.;K.Djidjeli;A.Charafi https://doi.org/10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3