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Abstract

The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is devel-
oped from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite ele-
ments and stochastic simulation techniques). The present method is based on the combination of radial basis
function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from
an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity
field is determined by solving the conservation equations for mass and momentum with a finite point
method based on RBFNs. The method does not require any kind of element-type discretisation of the anal-
ysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow,
the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

Keywords : Brownian dynamics, RBFN, stochastic simulation, viscoelastic flow, Brownian Configuration
Fields, CONNFFESSIT, finite point method, element-free method.

L. Introduction

In recent time, several works concerned with hybrid sim-
ilations using Brownian dynamics (Laso and Oettinger,
1993; Feigl et al., 1995; Laso et al., 1997; Hulsen et al.,
1997; Oettinger et al., 1997; Bonvin and Picasso, 1999;
_aso et al., 1999; Somasi and Khomami, 2000; Cormen-
ana er al., 2001; Suen ez al., 2002, Tran-Canh and Tran-
Zong, 2002; 2003) have been introduced to bypass the
need for closed-form constitutive equations (CE) which are
required in the conventional macroscopic approaches. The
principal idea behind these schemes is to couple the con-
finuum problem with Brownian dynamics. In the tradi-
tional CONNFFESSIT approach (Laso and Oettinger,
[993), also called Lagrangian CONNFFESSIT (Suen et
al., 2002), the polymer contribution to stress is calculated
irom the configuration of a large ensemble of dumbbells.
On the other hand, the Brownian Configuration Fields
{BCF) method (Hulsen er al., 1997), also called Eulerian
(CONNFFESSIT (Suen et al., 2002), uses an ensemble of
configuration fields which represent the internal degrees of
ireedom of the polymer molecules. The BCF method
avoids extra effort associated with the particle tracking pro-
cess.

In the majority of the works relating to hybrid simula-
tions, stochastic simulation techniques (SST for the cal-
culation of the stress tensor) are coupled with element-
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based methods (e.g. FEM for the solution of the governing
equations such as the continuity and momentum equations)
in a micro-macroscopic approach. In general, as an alter-
native to element-based discretisation of the governing
equations, various finite point methods can be used in the
so called meshless approach (Kansa, 1990; Belytschko et
al., 1996; Duarte and Oden, 1996; Randles and Libersky,
1996; Dolbow and Belytschko, 1999; Mai-Duy and Tran-
Cong, 2001; Atluri and Shen, 2002). In particular, Tran-
Canh and Tran-Cong, (2002; 2003) coupled successfully
the RBFN-based finite point method with SST for the
numerical solution of the start-up Couette and 2-D vis-
coelastic fluid flows. In the macroscopic part, the discrete
model is completely represented by a set of unstructured
discrete collocation nodes in the analysis domain and on its
boundary (i.e. there is no need to generate finite elements
or define any topological connectivity, which is commonly
referred to as truly meshless or mesh-free or element-free
approach). In other words, the method can at least avoid
the extra effort of meshing and re-meshing (if the problem
requires) associated with the element type methods. How-
ever, effective volumes for stress averages (EVSA) can be
flexibly generated around the collocation points to help
determine the average polymer stress (Tran-Canh and
Tran-Cong, 2003). The resultant element-free RBFN-SST
method is Lagrangian as far as the microscopic part is con-
cerned, and particle tracking could be inconvenient. A pos-
sible disadvantage of the present method is that the system
matrix is dense and may be ill conditioned for large prob-
lems. However, this problem can be overcome with the use
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of domain decomposition technique as will be reported
elsewhere.

In this paper, an Eulerian element-free RBFN-SST
method is developed following the Brownian Configura-
tion Fields idea. In the present method, the polymer con-
tribution to stress at all collocation points is calculated
using the BCF technique and then the continuity and
momentum equations are solved using the RBFN-based
method for the velocity field and pressure. The paper is
organized as follows: Sections 2 is an outline of the scheme
in which the governing PDEs and SDEs for the elastic
dumbbell models are briefly reviewed. In sections 3, the
RBFN-based numerical method for solving the conserva-
tion equations is briefly described, followed by numerical
methods of the solution of BCFs. The associated variance
reduction techniques are described for the SDEs for the
Hookean and FENE dumbbell models. Section 4 presents
the algorithm of the present scheme for viscoelastic flow
problems, highlighting the macroscopic-microscopic inter-
faces of the method. Numerical examples are then dis-
cussed in section 5, followed by a brief conclusion in
section 6.

2. Governing equations

The present work is concerned with the flow of dilute
polymer solutions which are modelled as an incompress-
ible suspension of non-interacting macromolecules in a
Newtonian solvent. Under isothermal and steady state con-
dition, an application of the penalty function method trans-
forms the governing equations into

20WV-L+pu-VYu+p V(V-u)=-V.- 7, (1)
where the penalty equation is given by

p=-pAV-u), @
subject to boundary conditions

u=u, xel,,
n.vuzq(ﬁ er?

where u denotes the velocity field; » is the unit vector out-
wardly normal to the boundary; L is the rate of strain ten-
sor; Ty is the Newtonian solvent viscosity; T=7°+ 7" =
2nnL + T7 is the extra stress; p is the fluid density; p, is a
sufficiently large penalty parameter. Although this method
produces an error of O(p,”) (Baker, 1983) in approxi-
mating V- u =0, it is considered as a good method which
allows the elimination of the incompressibility condition
and a corresponding reduction of the number of degrees of
freedom of the problem in solving complex problems
(Hughes et al., 1979; Crochet et al., 1984; Bernstein et al.,
1994; Laso et al., 1997; 1999). Travis et al. (1990) have
made rigorous comparison between a number of numerical
methods and concluded that the methods based on penalty

2

function produce comparably accurate results. The value of
the penalty parameter can only be chosen from experience
at this stage and the value chosen in this work is based on
the results reported in the references cited above.

The system is closed by the specification of a method to
calculate the polymer contribution to the stress 7*. Here,
the microscopic method employs the Brownian dynamics
simulation (or SST) to determine the polymer contribution
to stress 77 via kinetic modelling (Bird et al., 1987; Oet-
tinger, 1996; Halin et al., 1998). The kinetic theory-based
models used here are the Hookean, FENE and FENE-P
dumbbell models. These models consist of non-interacting
elastic dumbbells having two Brownian beads connected
by an entropic spring. The configuration of a dumbbell sat-
isfies a certain stochastic differential equation (SDE) as
detailed in Laso and Oettinger (1993) where the CON-
NFFESSIT idea was first proposed. In this approach, it is
necessary to convect a large number of molecules through
the domain under consideration, hence there are some extra
effort associated with particle tracking (Hulsen et al., 1997,
Laso, 1998).

Hulsen et al. (1997) proposed a modified CONNFFES-
SIT method which overcomes these drawbacks. The
method employs an ensemble of N continuous configu-
ration fields Q(x,r) with respect to space and time instead
of convecting discrete connector vectors @/s. The main
idea of this scheme is that after initiating N spatially uni-
form configuration fields (N,Q) whose values are inde-
pendently sampled from an equilibrivm distribution
function, the configuration fields are convected and
deformed by the drift component (flow gradient, elastic
retraction) and by the diffusion component (Brownian
motion). This evolution of a configuration field satisfies the
following SDE

Q1) = {—u-VQ+ K-Q—%F(Q)}dm /4"£wam, (3)

where { is the friction coefficient between the dumbbell
and the solvent; k; is Boltzmann constant; T is the absolute
temperature; W(f) is a 3-component vector which is a
Wiener process with mean (W{(5))=0 and covariance
(WADW (1)) = §; min(t,) and accounts for the random dis-
placement of the beads due to thermal motion; kK= (Vi)' is
the velocity gradient; F is the spring connector force
between the two beads and depends on the model. Letting
H be the spring constant, the connector force is given by

F=HQ, )
F=n—2 ®)
(&)

for the Hookean and the FENE dumbbell models, respec-
tively, where O, is the maximum possible spring length.
The configuration fields (V,Q) are obtained by solving the
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SDE eqn. (3). The term u(x,t) - VQ(x.5) accounts for the
convection of the configuration fields by the flow. Since
W depends on time only, it affects the configuration fields
in a spatially uniform way and hence the gradient of the
configuration fields is well defined as smooth functions of
the spatial coordinates (Hulsen ez al., 1997). It can be seen
that the existence of the convective term in this Eulerian
framework is completely equivalent to the particle tracking
in the traditional Lagrangian CONNFFESSIT approach.
Once the configuration fields are known, the stress can be
determined as follows

" = —nkgTT+n,(Q F), 6)
where n, is the density of dumbbells; I is the identity tensor

and F is the spring force. The configuration field Q is non-
dimensionalised by ,/k;7/H, and equation (3) becomes

Q' = [—u(x, N-VO (x.1)+ K1) Q'(x. 1) - i{F‘(Q')}dz

_ [
= J%IdW(z), ™

‘where Q' = Q[H/(k;T)]"* is the dimensionless form of the

configuration field vector Q; Ay = {/(4H) is the relaxation

time of dumbbells; b = IZ—QTﬁ is the square of the maximum
B

possible extension of the dimensionless configuration field

12" and F" is the dimensionless spring force given by

F=0. (®)
F=-2 9
x

“or the Hookean and FENE dumbbell models, respectively.
or the sake of brevity, primes will be dropped in the fol-
‘owing discussion.

3. Computational schemes

In this section, computational techniques are described
“or the numerical solution of the conservation equations
(momentum and continuity equations) and the Brownian
configuration fields, respectively. For the stochastic pro-
cesses, a variance reduction technique is described, fol-
owed by a presentation of the overall algorithm.

3.1. RBFN-based element-free method for solv-
ing the momentum and continuity equations

An element-free method based on RBFNs for solving
°DEs was developed and reported elsewhere (e.g. Tran-
Zanh and Tran-Cong, 2003). Briefly, the method takes
advantage of the fact that a smooth function can be approx-
imated by a RBFN such as (Haykin, 1999; Golberg et al.,
1996)
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fix)= z wh'x + z AP () =R (x)w+P(x)A (10)

j=1 k=1

S P Eaw'=0, k=1,...,m (11

i=1
where w’ e w (W' =[w' w’ .. w"]) and A'e AA"=[2'2%...2"))
are the synaptic weights; # is the chosen radial basis func-
tion corresponding to the /* RBF-neuron; p* is the poly-
nomial basis function corresponding to the & PBF-neuron;
m + m is the total number of neurons. R and P are defined
as follows

R'(x) = [A' ()R (x)... i ()], (12)

PT() = [p' (0)p(0)..p" (x)]. (13)

Let n be the number of collocation points (x,y:); x; is the
coordinate of the " collocation point and y; is the desired
value of function f at the collocation point x;. The RBF i’
employed here is the Thin Plate Splines (TPS-RBF)
(Duchon, 1976) which is given by

Hry=H(| x-¢|)y=r*log(r), s=1,2,... (14)

of which the corresponding first and second order deriv-
atives are given respectively by

gi—’j = rz<v—1>(x,-—c~{)(2slog(r)+ 1) (15)
X

N 2s-2) . A

m =2r (x—eD(x, =x)[2s(s— 1 og(r)+(2s=1) ]+ x(r),
2(N=r""slog(r)+1) Vi=1.
X(I’)=O Vil (16)

where r=x —c’and r=llx — Il is the Euclidean norm of
r; {c}” ., with m<n, is a set of RBF centers that can be
chosen from among the training points; & >0 is the width
of the /" RBF (Haykin, 1999). Since the TPS-RBF is C*'-
continuous, the power index s must be appropriately cho-
sen for a given partial differential operator (Zerroukat et
al., 1998). In the present work, the TPS-RBF with s =2 is
chosen to satisfy the continuity condition. For 2D prob-
lems, the first order PBF is used as follows

P =[1 x xl. (7

It is interesting to note that the TPS-RBF does not contain
any adjustable parameter and in some situations the TPS-
RBFN methods can achieve an accuracy similar to that of
the Multi-Quadric RBFN (MQ-RBFN) (Zerroukat et al.,
1998; 2000; Tran-Canh and Tran-Cong, 2002).

3.1.1. RBF-centres, collocation points and RBFN
training

The choice of the quantity and location of collocation
points (x;, i = 1,...,n) depends on the problem geometry and
desired solution accuracy and is a major open issue requir-
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ing separate investigation (Fodoseyev et al., 2000; Orr,
1999; Larsson and Fornberg, 2001). However, one can
imagine an analogy between an adaptive discretisation in
the present finite point method and a finite element
method. In this respect, an advantage of the present finite
point method is that points can be added or removed much
more easily than a corresponding addition or removal of
finite elements, since there is no topology to be concerned
about. In general, both collocation points and RBF centres
can be randomly and separately distributed in the analysis
domain. However, in the present work, collocation points
are chosen to be the same as RBF centres, 1.e. m = n, which
are uniformly distributed in the physical domain. The
unknown weights are found by minimizing an appropriate
cost function given by

C(w,A) = z( P fO) AT WO,

j=1

(13)
where A is a global regularization parameter; we w',
w ='W, W™,

Then the partial derivatives of flx) can be calculated ana-
lytically as follows
§“/m/(x>+ s A Lpf ),

k=1

Lfix)= 19)
j=1
where A is a derivative operator.

In particular, each variable in the momentum and con-
tinuity equations is approximated by an RBFN such as
(10), and those equations are collocated at chosen points
throughout the analysis domain, yielding the following
sum square error without penalty method (planar flows in
dimensionless form)

SSE = Z{aul gzz}
2
ibl[‘ éz_l/ﬂ aul au] _aﬁ 8T11 31’2]’1
*Z{ 8x%+3x§:’—Re[ul8 +“Zax2} 8x1+[3x,+o7x2:|_
auﬁ auz 8“2 auz QL)_ 81’ aT
*2{ P ox 2] Re[“‘a *“%J 3x2+[8_x, axz}

PRI oy (20)

{[rgeen
iel, iel, ]a 28

and with penalty method

q(’}

SSE =

Z{ 3 u]
27 Uy

ox?
{2

8“1 du,  du, du, I,
&XZ} Re [ 9%, T420x, }“”f[&xl

8x18x2:| (1)1,.}

du, Ju du du, du
5 2} Re[u]o7 2+u23 2} p”|:8x2 +8x13)lcj+(p2'}_

2

+ 3 {u-u, )+ 3 1)

{|:n 3u1+n 8M2:| q }2
iel, iefl, la Zax ‘ .

i

where i denotes the i collocation point; &= 1y/1,; 7, =
Ty + My; 7, is the polymer viscosity; Re = pVa/n,, V and a
are characteristic velocity and length, respectively; @, =

ath 3’!‘21 ot 31«'22

8v( X))+ 7% = (x)); (152,-=D—(x) (x) The stresses are

scaled by nOV/a. Applying the general linear least square
principle to (20) or (21) (taking into account (11)), a sys-
tem of linear algebraic equations of the unknown weights
is obtained as follows

(B'B)w' =By (22)

where B is the design matrix; w' is the vector of all
weights; y is the vector of known values. The non-linear
convective term (i - V)u in (20)-(21) is estimated using a
Picard-type iterative procedure whose detail can be found
in Tran-Canh and Tran-Cong (2003).

3.2. Numerical solution of the configuration fields

In the present work, two numerical schemes are used to
solve the SDE, namely the explicit Euler and the semi-
implicit predictor-corrector scheme. The former is rel-
ative simple and therefore not detailed here. The latter
for the time discretisation of the elastic dumbbell con-
figuration fields was described in Gardiner (1990) Oet-
tinger (1996) Kloeden and Platen, (1995) and Somasi et
al. (2000) and therefore is presented only briefly for the
FENE model. The technique consists of two steps as fol-
lows

(a) The predictor step

Let Q, = Q(#,), using a fixed time stepsize At for the sto-
chastic process, the predicted BCF Q*,M at the time step
t,. is explicitly determined as follows:

At+A/7W,,,
24

(23)

Q(*n+l) = Qn_ u,: VQn_Kn'Qn

The updated configuration fields Q,.,'s are employed to
estimate the polymer contribution to the predicted stress
T et according to (6), which is in turn used to get the
solutions of the predicted velocity at time ¢,,, by solving
eqn. (1).

(b) The corrector step

At
2
4/1,,(1 —Q—';}* ' )

1+

1 * *
Q(rz+1) = Qn+§(_un' VQn_un-H ) VQn+1
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+Kn-Qn+ﬁ+1-Q§+|—LQ2 +J%W,, (24)
241G

Eqn. (24) leads to a unique cubic equation for 1 Q,,, | of
'which admissible solutions are those that satisfy 0 <10, |
<. /b (Oettinger, 1996). It is noted that in the present work,
1he gradients of the configuration and velocity on the RHS
of (23)-(24) are determined by calculating directly the
derivatives of their TPS-RBFN approximant as shown in
eqn. (19).

The polymer stress tensor is then determined by the aver-
age of the configuration fields evaluated at each collocation
point and given by Kramers' expression as follows (Bird et
al., 1987; Oettinger, 1996):

T=-nzksT((QO)-1I) (25)
R (26)
K:

‘or the Hookean and FENE dumbbell models, respectively.

3.3. Variance reduction method

Without increasing the number of dumbbells, in polymer
Jdynamics, a method is available to reduce the variance, but
10t to change the average value of the parameters of inter-
st (Melchior and Oettinger, 1996; Oettinger et al., 1997;
Bonvin and Picasso, 1999). The variance reduction consists
of different techniques which are detailed in Oettinger et
al. (1996); Kloeden and Platen (1995) and Kloeden et al.
'1997). Owing to the Eulerian nature of the BCF scheme,
he implementation of the variance reduction techniques is
wchieved easily in the present approach. In this work, the
control variate method is presented only for the FENE
Jumbbell model. Discussions on the efficiency of the
scheme can be found in those references cited earlier (Mel-
chior and Oettinger, 1996; Oettinger et al., 1997; Bonvin
and Picasso, 1999) and are not repeated here.

3.3.1. Control variate method for the FENE dumbbell
model

The method uses a control variate X, which is correlated
with a random variable X, to produce a better estimator of
’X). While {X) is unknown and needs to be estimated, {X,)
>an be calculated by a deterministic method. The method
1as been applied in other studies more recently (Jendrejack
2t al., 2000; Kroger et al., 2000 and Prabhakar and
Prakash, 2002). In the Brownian Configuration Fields
method, the control variate reduction technique is imple-
mented as follows: at each collocation point, N dumbbells
are assigned and numbered from i=1..N where dumb-
sells having the same index in the whole analysis domain
have the same random number. Here, for illustrative pur-
nose, this technique is presented for the numerical calcu-
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lation of the polymer contribution to stress using the FENE
model (26) where the expectation of random variable

00
1-0%b
0O (x, 1) be the control variate corresponding to the con-
figuration field Q(x, r). The variance reduction method is
carried out by splitting the expectation above as follows
(Bonvin and Picasso, 1999)

00| _[00|,/00 00| @
I—Q- l_Q— I—Q—
v\

is required. At each time ¢ and position x, let

i
b

When é = 0 there is no variance reduction. From (27), the
polymer stress tensor (26) is rewritten as follows

=gk 7| 2L L Q7 (28)
1 & 1 o
b b
where
’_rfi:ne = _ndkB <%>_I . (29)
X

The first term of the RHS of (28) is calculated by using
Brownian dynamics simulations and the second term is
determined in a deterministic way. In the present work,
since @'s are estimated at equilibrium configuration 77,
is zero and the configuration vectors Q's satisfy the fol-
lowing SDE

d0 = —%{dt+ J%dW(t), (30)

where F is determined by (9). The polymer stress tensor
(28) reduces to

o= k7| 2222\ 31)
1—% 1_Qb_

4. Algorithm of the present method

In general, the overall approach can now be described in
a detailed algorithm (see Figs. 1 and 2 for flowcharts) as
follows:

a. Generate a set of collocation points and start with an
initial velocity for the first iteration (zero in the present
work) along with the boundary conditions of problem;

b. Assign N dumbbells to each collocation point. These
dumbbells are numbered from i=1 to N. All dumbbells
having the same index constitute a configuration. Hence
there is an ensemble of N configuration fields Q, (i=1 ..
N). Initially, the polymer configuration fields are spatially
uniform and their values are independently sampled from
the known equilibrium distribution function which is a 3-
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Generate collocation points
Impose boundary conditions
Impose initial guess of internal velocity field u
t,=0;n=0

f

Initialise configuration fields
mi (N random connector vectors at each collocation point)
Determine the corresponding control variates

F

RBF-approximant of uj
Vu,
fa ~
Calculation of the Brownian configuration field
(see next flow chart)

=

_Ng n=n-+1
tn:tnA“'At

Check convergence

M: macro-process
m; MiCro-process

Fig. 1. General flow-chart of the present element-free RBFN-
SST method. See Fig. 2 for details of the calculation of
the BCE.

D Gaussian distribution with zero mean and unit covari-
ance (Bird er al., 1987; Oettinger, 1996). Since all the
dumbbells having the same index receive the same random
numbers, there is a strong correlation between dumbbells
in a configuration. The control variates Q 's associated with
the configuration fields Q;'s are created as described in sec-
tion 3.3;

c. Calculate velocity gradient fields directly by ditfer-
entiating the RBFNs that approximate the velocity fields;

d. Calculate the polymer configuration fields using the
method described in section 3.2. To ensure strong corre-
lation within a configuration field, all the dumbbells of the
same index have the same random numbers. For each con-
figuration field Q, a corresponding control variate Q@ is
determined according to the procedure described in section
3.3. In this work, while the time discretisation of the BCF
is carried out by a predictor-corrector scheme, the control
variates which are governed by eqn. (30) is estimated by
Euler method;

e. Determine the polymer contribution to stress by taking
the ensemble average of the polymer configurations at each
collocation point, using (28) for the FENE dumbbell model
for example. Impose the stress boundary conditions at the
collocation points located on the boundary;

6

vy

Solve (30) for Q,., (a)
Solve (7) for Q7. (b) (Predictor)

Using (a) & (b)
Calculate 17, by (28) at collocation
points

I TPS-RBF approximant of t%,, and Vt1.,

Solve continuity & momentum
equations for u%,,
I

Calculate Vu?%,.,

l Solve (7) for Q.. (c) (Corrector)

Using (a) & (c)
Calculate t%,; by (28) at collocation
points h

Y

’ TPS-RBF a pproximant of t*., and Vit ]

Y

Solve continuity & momentum
equations for u,,,

No Ut = Gy
+H1 - a)ury

Check convergence
Uy VS Up.)

Yesl

Fig. 2. Details of the calculation of the BCF using semi implicit
predictor corrector method. This flowchart represents part
of the overall flowchart shown in Fig. 1.

f. The stress is then approximated globally by TPS-RBF
networks which are the ultimate description of the stress
field,

g. With the stress field just obtained, solve the set of con-
servation equations for the new velocity field using the
RBFN-based mesh-free method as described in sections
3.1,

h. Terminate the simulation when either the desired
time or convergence is reached. The latter is deter-
mined by a convergence measure for either the velocity
field or the stress field, which is defined for the veloc-
ity field by

O
————<tol (32)
> ()’

=1

where d is the number of dimension (2 in the present
work); tol is a preset tolerance; u; is the i component of the

velocity at a collocation point; N is the total number of col-
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-

3
]

1

.

-

s I=1
Y

(0] ;:__] X

Fig. 3. The start-up planar Couette flow problem: the bottom
plate moves with a constant velocity V=1, the top plate
is fixed; no-slip boundary conditions apply at the fluid-
solid interfaces. The collocation point distribution is only
schematic.

location points and n is the iteration number. Convergence
is also checked for the shear stress and the first normal
stress difference;

i. Return to step (d) for the next time level of the micro-
scopic process.

5. Numerical examples

The present method is verified with the simulation of the
start-up planar Couette and steady state planar Poiseuille
flows of Hookean and FENE model fluids. The capability
of the method is then demonstrated with the simulation of
the lid driven cavity flow of the Hookean model fluid. For
all examples, the criterion for convergence is tol = 107
applied to the velocity field.

5.1. Start-up planar Couette flow

This problem was earlier studied by Mochimaru (1983)
for the FENE-P model, by Laso and Oettinger (1993) and
Tran-Canh and Tran-Cong (2002) for the FENE and
FENE-P models, and it is used here to verify the present
method. The problem is defined in Fig. 3. and the chosen
physical parameters are 1, =Ny + 17, =1, p=12757, A=
49.62, b =50, Ny=0.0521, At=10" (Mochimaru, 1983;
Laso and Oettinger, 1993).

To ensure that the centre density is adequate, three levels
of discretisation are used, namely n=17, n=23 and n =
25, and the results show that the solutions obtained do not
differ significantly. Only the results corresponding to n =
25 are presented here. The analysis is carried out for the
FENE dumbbell model where the configuration fields are
produced with one thousand dumbbells at each collocation
point and the velocity convergence is shown in Fig. 4. The
control variate is calculated at the equilibrium state. The
simulation is continued for ¢ 2 0 until the flow reaches the
steady state.
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20 40 60 80 100 120 140 160 180 200

lmeatan
Fig. 4. The steady-state planar Couette flow problem using the
FENE model: the velocity convergence rate. The param-
eters of the problem are number of collocation points =
25, the number of dumbbells at each collocation point =
1000, Ay =49.62, b =50, 7y=0.0521 and Ar=107,

].2(“*
|
£ ¥=0.2
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Fig. 5. The steady-state planar Couette flow problem using the
FENE model: the time evolution of velocity at locations
y=0.2,y=04, y=0.6 and y = 0.8. The parameters of the
problem are number of collocation points = 25, the num-
ber of dumbbells at each collocation point = 1000, A=
49.62, b=50, ny=0.0521 and Ar=107"

Fig. 5 describes the evolution of the velocity at four loca-
tions y=0.2,y=04, y=0.6 and y = 0.8 and shows that the
velocity overshoot occurs sooner in fluid layers nearer to
the moving wall. Fig. 6 depicts the evolution of the velocity
profile with respect to the coordinate y, which confirms
that velocity undershoot is insignificant in comparison with
overshoot. Figs. 7 and 8 describe the evolution of the shear
stress and the first normal stress difference, respectively at
locations y =0.2, y=0.4, y=0.6 and y =0.8. The present
result is a close match with the results of CONNFFESSIT
(Laso and Oettinger, 1993) and CVFNNSS (Tran-Canh
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Fig. 6. The steady-state Couette flow problem using the FENE
dumbbell model: the velocity profile with respect to loca-
tion y at different times. The parameters are the same as
in Fig. 5.

-0.1
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t

Fig. 7. The steady-state planar Couette flow problem using the
FENE dumbbell model: the evolution of shear stress at
location y=0.2, y=04, y=0.6, y=0.8 with respect to
time. The parameters are the same as shown in Fig. 5.

and Tran-Cong, 2002). It is notable that the quality of con-
vergence is better than that achieved with the CVFNNSS
method.

5.2. The steady state planar Poiseuille flow

The planar creeping Poiseuille problem and coordinate
system are described in Fig. 9a where only half of the fluid
domain needs to be considered, owing to symmetry. For
this problem, the characteristic length is chosen to be a,
half of the gap between the two parallel plates; the char-
acteristic velocity V, the maximum velocity; the charac-
teristic viscosity 7),= 1y + 7,; and the characteristic time
Ay. The length of the domain under consideration is a.

8

(T REPENNE 20 25
Fig. 8. The steady-state planar Couette flow problem using the
FENE dumbbell model: the evolution of the first normal
stress difference at location y=0.2, y=04, y=0.6,
v =0.8 with respect to time. The parameters are the same
as shown in Fig. S.
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Fig. 9. a) The planar Poiseuille flow problem with parabolic inlet
velocity profile; non-slip boundary conditions applied at
the fluid-solid interfaces. b) The collocation point dis-
tribution is only schematic.

Using two collocation densities, namely 15X 15 and
25 % 25, whose schematic distribution is shown in Fig. 9b,
1000 dumbbells are assigned at each collocation point. In
this example, tow models, namely Hookean and FENE, are
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considered. The fluid parameters are as follows (Feigl et
al., 1995)

nN = 059 nN/no =

5.2.1. Boundary conditions and analytical solution

The macroscopic boundary conditions are given in
dimensionless form as follows:

* On the wall (I), there is no slip

ux)=0

0.5; Ay=1; b=50.

® At the inlet section (1), the flow is fully developed
Poiseuille where the velocity profile is parabolic for the
Hookean model as follows

{u,(x) =u,=(1-x3),

Mz(x) =0

For the FENE model, this velocity profile is not parabolic
and determined by using the periodic boundary condition
at the inlet and outlet. Although the planar Poiseuille flow
can be computed as a 1D-problem, the 2-D method using
the model FENE is carried out as follows

— Initially, the inlet of the domain is given a parabolic
profile as described above for the Hookean model;

— The obtained outlet velocity profile at a step i is used
to update the inlet velocity profile of the next step (i + 1);

—The process is continued until there is no further
change in the outlet profile.

e At the outlet section ((I'3)

ux(x) =0,

¢ On the centreline (1), the symmetry condition applies
3
uy(x), (9—)%‘(x), 7,,=0.

For the Hookean dumbbell (Oldroyd-B) model, the creep-
ing Poiseuille flow problem has the analytical solution
given by

f=301-000e 34 T ram (-0l mm0. (34
X2 X2

where De = Ay (u\)a=2/3 AyVia is the Deborah number
and stresses are scaled by 7,V/a. The above analytical solu-
tion is used to judge the quality of the following numerical
simulation.

5.2.2. Sum square error

The expression of sum square error (20) for the creeping
planar Poiseuille flows is given by

SSE= 'Y {-8——'()()+a—2(x1)}

x;€ Q2
i

+2H‘2";< >+aa”§'( )J —Bu)w[(x)F
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82142 8 [Z#] _2 ’
+31 0 () + 2(X) (X)+(D»(X)
8)(] a Xy ;

2
Y )Y+ T )+ 3w+ 3 {81,(”}

xe xe x€ T, xely

+ Y B+ Y W)+ Y uix), (35)

xely xely xely
where

d ot
@)= G0+ SR x: @) = 5000+ T w,

is the inlet velocity profile given in section (5.2.1).
5.2.3. Results and discussion

The solutions obtained for the velocity field, shear stress
and the first normal stress difference are the averages of the
last 200 iterations after reaching the steady state. For the
Hookean dumbbell model, the parabolic velocity profile is
accurately recovered in the downstream region as expected.
Figs. 10 and 11 show the polymer shear stress and the first
normal stress difference on the middle plane x, = 0.5 cor-
responding to the two collocation densities 15x15 and
25 x 25. The results are in very good agreement with the
analytical solution given by eqn. (34). Fig 10 also shows
the polymer shear stress and the first normal stress dif-
ference at several steps after convergence (steps 120, 121,
122) which depicts small oscillation in steady state solu-
tions as iteration goes on. Such oscillation has its origin in
stochastic nature of the microscopic stress calculation, and

S
- gt
% T sbep 2R
S frs s w a0 oF bre Lask 200 abopra
4 |« « bos mabbical scldsen P
P
L
‘.
¥
*
3 v
Pt
.
L
K
"’&
: -
2 %
”
',‘
e
1 o
-~
/"A‘N/
Al
el
O g gl = B>

Fig. 10. The steady state planar Poiseuille flow problem using the
Hookean dumbbell (Oldroyd-B) model with 15 x 15 col-
location points: the polymer shear stress and the first
normal stress difference on the middle plane x;=0.5
with respect to x; are denoted by ‘x” for the step 120, ‘0’
for step 121, “** for step 122, solid line for the average
of the last 200 steps and dashed line for the analytical
solution, respectively.
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Fig, 11. The steady state planar Poiseuille flow problem using the
Hookean dumbbell (Oldroyd-B) model with 25 x 25 col-
location points: the polymer shear stress and the first
normal stress difference (averaged of the last 300 steps)
on the middle plane x, =0.5 with respect to x, are
denoted by ‘A’. The dashed line represents the analytical
solution

therefore the final result is obtained by averaging a large
number of these “steady state' solutions.

5.3. Lid driven square cavity

While this problem has attracted the interest of many
researchers in the case of viscous fluids, there are very few
numerical results for viscoelastic fluids. Mendelson ef al.
(1982) and Grillet et al. (1999) use the FEM for the anal-
ysis and Tran-Cong et al. (2002) employs a BEM and RBF
approach for the numerical solution for the Oldroyd-B
model. On the other hand, Pakdel et al. (1997) performed
experiments on an ideal Boger fluid. The results cited
above are used here for qualitative comparison with the
present results since the fluids used in those studies are dif-
ferent, except for the case of Tran-Cong et al. (2002), from
the Hookean dumbbell model (Oldroyd-B model) used
here. The flow is creeping, isothermal and in a steady state.

The geometry of the computational domain with the cho-
sen coordinate system is shown in Fig. 12a. Let L. and H
be the width and height of cavity, respectively. Using six
different sets of collocation points (11 x 11 +2); (15x 15
+2) (17x17+2), (19%19+2), (21 x21+2) and (41 x
41 + 2) whose schematic distribution is described in Fig.
12b, 1000 dumbbells are assigned at each collocation
point. The fluid parameters are given by

a=%’=1/9; Ay=1. (36)

]

Let V be the speed of the lid. The Deborah numbers is
given by

10

F
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Fig. 12. a) The lid driven square cavity problem: velocity of the
upper lid is unity; non-slip boundary conditions apply at
the fluid-solid interfaces. b) The collocation point dis-
tribution is only schematic.

De:l”.I‘T/I’

Similar to the works of Tran-Cong et al. (2002) and Gril-
let et al. (1999), the Dirichlet boundary conditions are
given, in dimensionless form, by (Fig. 12.a):

u(x)=1 Vxel,
u,(x)=0 Vxel,
ux)=0 Vxel.

In order to reduce the number of the degrees of freedom
of the problem, the penalty function method for the
momentum equation (1) is employed and then the sum
square error (20) is rewritten as follows:

2% dw]  P[dw . o F
SSE = —t— | + =t | +D;
X’_EQ{{ a)C% ax; iL. TI(J‘: ax % ax |ax2]vi ‘

s dwr| [ Pfdwz, dus F
+ —+ A= | + Dy, 37
z { oxi  Ix L * Tlo{ ox; OX |3X2L.+ ’ G7

x€Q

T -1+ 3 )i+ 3 @i+ T (W)}

xe e xel; xe s
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P P P D
where Qli = %Lxlll(xi)*-%(xi); ¢2i = aaix’]z(xi)+a%222

known by virtue of the BCF simulation and approximated

(x;). are

Table 1. The lid driven square cavity flow problem using the
Hookean dumbbell model: Trend of the “mesh conver-
gence' measure, CR defined by with increasing number
of collocation points for De=1. N: number of collo-
cation points, fp: number of internal test points.

N tp CR
1Ix11+2 81 1.0000
15%x15+2 81 0.0447
17x17+2 169 0.0123
19%x19+2 225 0.0116
21 x21+2 289 0.0097
41 x41+2 443 0.0093

n

v
09| 4 o

| i
08l | ¢ i
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Fig. 13. The lid driven square cavity flow problem using the
Hookean dumbbell model: the velocity field (upper fig-
ure); the zoomed velocity field around the primary vor-
tex position (lower figure). The parameters are o= 1/9,
Ay=1 (De=1), (21 x21 +2) collocation points.
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using TPS-RBFN's and (.),, denotes the value of () at x;.
5.3.1. Results and discussion
In order to demonstrate that numerical solutions converge
to the correct solution, six different sets of collocation
points are used as described above and ‘mesh convergence’
is measured by the following criterion

2
Y -ty
CR= |2 —— (38)
T (u)’

tpi=1

where tp is the set of internal test points, #;"" is the i com-
ponent of the velocity at an internal test point associated

Fig. 14. The lid driven square cavity flow problem using the
Hookean dumbbell model: the velocity field (upper fig-
ure); the zoomed velocity field around the vortex posi-
tions. The parameters are ot=1/9, Ay =1 (De = 1), (41 %
41 +2) collocation points
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with the coarser discretisation and v;" is the corresponding
quantity associated with the finer one. Since the solution
(velocity field) is the average of the results of a number of
iterations, ' and v, are the average values at the internal
test points. Table 1 reports the trend of CR for the velocity
field with increasing collocation density for De = 1.0. The
process is deemed to have achieved “mesh convergence'
when CR is O(107%).

As in the previous examples, the numerical solutions are
the average of the results of the last 200 iterations after
convergence. In the case of the Hookean dumbbell model,
the result is in good agreement with the findings of Tran-
Cong et al. (2002). Figs. 13 (collocation density 21 X 21 +
2) and 14 (collocation density 41x41 +2) depict the
velocity field for De = 1 and Figs. 15 describes the x,-com-
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09, = - Meagechielmt 30 b

08 -
07-
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<05

04
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Fig. 15. The lid driven square cavity flow problem using the
Hookean dumbbell model: the profile of the velocity
component u, on the horizontal central plane (upper fig-
ure). The profile of the velocity component u, on the ver-
tical central plane (lower figure). The solid lines are for
the last several steps and ‘-0-" denotes the average of the
results from the last 200 iterations. The parameters are
the same as in Fig. 13.

ponent velocity profile on the vertical central plane x, = 0.5
and the x,-component velocity profile on the horizontal
central plane x, = 0.5. Fig. 16 depicts the velocity field for
De =1.5. The results show that the primary vortex center
tends to shift upstream and towards the driving lid when
De increases. The primary vortex appears to extend up to
the walls as shown in Fig. 14 where the size and location
of secondary vortices can also be observed in the lower left
and right corners. Although the present results can only be
compared with Tran-Cong et al. (2002) as they used the
same model fluid (Oldroyd-B), it is generally in qualitative
agreement on the typical flow features reported by Grillet
et al. (1999), Mendelson et al. (1982), and Pakdel er al.
(1997) in which the vortex shifts upstream as the De num-
ber increases. Since the discussion on the efficiency of the
control variate variance reduction is not the object of the
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Fig. 16. The lid driven square cavity flow problem using the
Hookean dumbbell model: the velocity field (upper fig-
ure); the zoomed velocity field around the primary vor-
tex position (lower figure). The parameters are the same
as in Fig. 13 except that 4,=1.5 (De=1.5)
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I7ig. 17. The lid driven square cavity flow problem using the
Hookean dumbbell model: the profile of the velocity com-
ponent u, on the horizontal central plane (lower figure).
The profile of the velocity component u, on the vertical
central plane (upper figure). The average of the results
from the last 200 iterations corresponding to the number
of dumbbells fixed at each collocation point 600, 1000 and
1400. The parameters are the same as in Fig. 13, De = 1.

present work, only an observation of the effect of the num-
ber of configuration fields on the velocity fields is given in
IFig. 17 for the cases of 600, 1000 and 1400 dumbbells
assigned at each collocation point and De = 1. The results
shown in Fig. 17 demonstrate that the choice of 1000
dumbbells is adequate.

6. Conclusions

This paper reports the development of a computational
method for viscoelastic flows using a combination of a
RBFN-based element-free method and SST from the Eule-
rian CONNFFESSIT point of view for 1-D and 2-D prob-
lzms. '

The main advantages of the present method are that: par-

Korea-Australia Rheology Journal

ticle tracking is not necessary; variance reduction of the
stochastic stress tensor is achieved for the same number of
dumbbells used; the noise effect due to the Brownian com-
ponent is reduced; the method is element-free in both mac-
roscopic and microscopic parts and only an unstructured
set of collocation points is required to discretise all gov-
erning equations.

The method is verified with standard test problems,
namely the start up Couette flow and the planar Poiseuille
flow problems. The potential of the method is demon-
strated with the successful solution of a non trivial prob-
lem, namely the lid-driven square cavity problem.
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