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Hybrid-QUICK Scheme Using
Finite-Volume Method

Jung-Eun Choi*

Abstract

The formulation for hybrid-QUICK scheme of convective transport terms in
finite-volume calculation procedure is presented. Source terms are modified to
apply the hybrid-QUICK scheme. Test calculations are performed for wall-driven
cavity flow at Re = 102, 103, and 10%. These include the evaluation of bound-
ary conditions approximated by third-order finite difference scheme. The stable
and converged solutions are obtained without unsteady terms in the momen-
tum equations. The results using hybrid-QUICK scheme show no difference with
those using hybrid scheme at low Re (=10?) and are better at higher Re (=103
and 10%).

1 Introduction

Many researches have done to treat the convection terms in the Navier-Stokes (NS)
equations to obtain stable solutions at high Reynolds number(Re) and vortical flow; a
first-order-accurate upwind differencing[1], a hybrid of first-order upwind and central-
differencing[2], a third-order-accurate upwind scheme[3, 4]. Hayase et al.[5] also present
formulation for this scheme using a first-order-accurate upwind scheme. Kang et al.[6]
compared the results from the various schemes, i.e., 2nd- and 4th-order central and 1st-,
2nd-, 3rd-order upwind scheme. Agawal[3], Hayase et al.[5], and Kang et al.[6] succeed
to obtain accurate and stable solutions for a wall-driven cavity flow at high Re (= 104).
The use of a high resolution upwind scheme in an implicit solution procedure results
in nondiagollay dominant matrices and can lead to numerical instabilities. One of
techniques to remedy these instabilities is that the matrix remains diagonally dominant
throughout iterative procedure. In this paper, the same diagonal matrix formulation
of hybrid scheme is retained by changing source terms to apply the QUICK scheme.
And the wall-driven cavity flow is calculated by applying the boundary conditions
approximated by the third-order finite difference scheme.

2 Computational Method

Computational method is based on extensions of TEACH code (Gosman and Ideriah[7],
or Oh[8]), which applies the staggered-grid arrangement for the velocities (Fig. 1) and
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SIMPLE algorithm for the coupling of the velocity and pressure field. The continuity
and NS equations for incompressible viscous flow are written in the physical domain
using two-dimensional Cartesian coordinates (z,y). In the non-dimensional form, the
equations are:
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Equations (1) and (2) are transformed into nonorthogonal curvilinear coordinates.
A partial transformation is used. Then (2) becomes
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Here, b; are geometric coefficients and superscripts (£,7) are the plane of control
volume. In the hybrid scheme of finite-volume method, integration of ¢ for the control
volume gives;
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and
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where the subscripts (D,U,N,S,d,u,n,s) and superscript (-) are the nodal points and
integration value for the control volume, respectively. Then, the following five-point
finite-volume algebraic equation is obtained

apbp = aypy + asps + apdp + aydy + S, (1)
where
ap=0N+a5+dD+aU+(Cfi_Ci+cz_CZ) (8)

The QUICK scheme employs quadratic interpolation technique using two-point
upstream and one-point downstream within the context of a control-volume approach
for calculating on a staggered grid (Fig. 1). Then we obtain the velocities at nodes
(d,u,n,s) from the above scheme assumption (Table 1). By substituting the velocities
of Table 1 into (4) and (5), we can obtain the equations using QUICK scheme. Then,
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the differences between these equations and the hybrid equations give the additional
source terms due to QUICK scheme (:AS’;’ ), i.e,

apdp = apdp+ aydy+ andy+ asps+ Sy + oS, (9)

where AS,” = ASg;” +AS,,". The values of AS;;” and AS,,” are shown in Table
2.
A third-order formulations which are applied at the boundary are illustrated at Fig.

2. In the case where ¢ is perpendicular to wall and C§ > 0 (Fig. 2a), the velocity at
node u is changed, i.e.,
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Then, the additional source term (ASyeg”) at the boundary is

AS ey =Ci(~’é—¢D+%¢P_%¢U+%¢UU) (10)

By the same way, in the case where ¢ is parallel to wall and C¢ > 0 (Fig. 2b),

AS—IJ&;” =C§(_—21I¢P+'}I¢U“%-¢UU+%_¢b) (11)

where ¢, is the velocity at the boundary.

3 Computational Conditions

Numerical calculations are performed for the wall-driven cavity flow. The values of Re
to be investigated are 102, 103, and 10*. The grids are generated by analytic method.
The grid effects are studied from the centerline velocity components at the various grid
no. from 31x31 to 81x81 by increasing 10x10. The results of Hybrid scheme, which are
not presented in this paper, show that the denser the grid is, the closer is the solution
to the Ghia et al.[9]. However, the results of Hybrid-QUIK scheme, show the numerical
errors for the denser grid (> 61x61), especially at higher Re no.(=10%), due to small
values of Jacobian and numerical diffusion. Therefore, 51 x 51 grids are adopted (see
Fig. 3). Underrelaxation factors for velocities and pressure (= 0.5) are used. The



Jung-Eun Choi 61

values of residuals of ¢(= U,V,p) are less than 10~* (Fig. 4), where the residual is
defined by

Residual(it) =

3 % sie- 1)1 - 1ol | 3 33166 12

where it, itl, ni, and nj is iteration, last iteration number, grid number in £- and 7
-direction, respectively. The calculations are performed on IBM 9076.

4 Results and Conclusions

Centerline velocity profiles for U and V velocity components are shown in Fig. 5. The
U and V plots are along vertical and horizontal lines, respectively. These values are
compared with the results of Ghia et al.[9]. At low Re (= 102), there is no difference
between the results of hybrid and hybrid-QUICK scheme. As Re increases, the dif-
ferences become larger showing that the results using the QUICK scheme are more
accurate. However, these are a little different from the results of Ghia et al.[7] at the
region of low speed and high velocity gradient. The contours of stream functions and
equivorticity lines are shown in Fig. 6 and Fig. 7, respectively. As shown in Fig. 6,
the magnitudes and shapes of the contours of hybrid-QUICK scheme are very similar
to those of hybrid scheme at low Re (= 10%). As Re increases, the contour shapes
and magnitudes of hybrid-QUICK scheme are much different with those of the hybrid
scheme. The same tendency can be seen in the equivorticity lines (Fig. 7). Fig. 7
show the development of a central, nearly circular vortex, with bottom (and side) sec-
ondary vortices. At Re = 10%, a tertiary vortex in the bottom (and side) appears in
hybrid-QUICK scheme, whereas no tertiary vortex in hybrid scheme. The region of
the tertiary vortex is a little smaller than those of Ghia et al.[9]. From these results,
the more stable and converged solutions can be obtained by using the hybrid-QUICK
scheme, especially, at high Re.
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Table 1: Velocities at nodes d, u, n, and s
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Table 2: Additional source terms in QUICK scheme
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Figure 2: Third-order representations of near boundary
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Figure 6: Stream functions
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