• Title/Summary/Keyword: Drain engineering

Search Result 987, Processing Time 0.033 seconds

Discharge Capacity for Vertical Drain Boards with Hydraulic Gradient Variation (동수경사 변화에 따른 연직배수재의 통수능)

  • Kim, Ju-Hyong;Lee, Kwang-Wu;Cho, Sam-Deok;Chang, Gap-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • This paper studies the discharge capacity of vertical drain boards that is controlling hydraulic gradient among many factors in the specification. The KS K 0940(2008), a testing method based on the conventional Delft type method for measuring the discharge capacity of a vertical drain, was specified in Korea Standard recently. In this test method, the variation in hydraulic gradient can result in large differences in the discharge capacity for the same vertical drain board.

  • PDF

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials (서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상)

  • Kim, Seung-Tae;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Enhanced Photoresponse of Plasmonic Terahertz Wave Detector Based on Silicon Field Effect Transistors with Asymmetric Source and Drain Structures

  • Ryu, Min Woo;Kim, Sung-Ho;Kim, Kyung Rok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.576-580
    • /
    • 2013
  • We investigate the enhanced effects of asymmetry ratio variations of the source and drain area in silicon (Si) field-effect transistor (FET). Photoresponse according to the variation of asymmetry difference between the width of source and drain are obtained by using the plasmonic terahertz (THz) wave detector simulation based on technology computer-aided design (TCAD) with the quasi-plasma 2DEG model. The simulation results demonstrate the potential of Si FETs with asymmetric source and drain structures as the promising plasmonic THz detectors.

Gate-Induced-Drain-Leakage (GIDL) Current of MOSFETs with Channel Doping and Width Dependence

  • Choi, Byoung-Seon;Choi, Pyung-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.344-345
    • /
    • 2012
  • The Gate-Induced-Drain-Leakage (GIDL) current with channel doping and width dependence are characterized. The GIDL currents are found to increase in MOSFETs with higher channel doping levels and the observed GIDL current is generated by the band-to-band-tunneling (BTBT) of electron through the reverse-biased channel-to-drain p-n junction. A BTBT model is used to fit the measured GIDL currents under different channel-doping levels. Good agreement is obtained between the modeled results and experimental data. The increase of the GIDL current at narrower widths in mainly caused by the stronger gate field at the edge of the shallow trench isolation (STI). As channel width decreases, a larger portion of the GIDL current is generated at the channel-isolation edge. Therefore, the stronger gate field at the channel-isolation edge causes the total unit-width GIDL current to increases for narrow-width devices.

  • PDF

Reduction of Drain Leakage Current by AlGaAs buffer layer in GaAs MESFET (GaAs MESFET에서 AlGaAs buffer layer에 의한 Drain 누설전류 차단)

  • Park, Jun;Jo, Jung-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1321-1323
    • /
    • 1998
  • We investigated drain leakage current in GaAs power MESFET. The device we studied by 20 simulation has a $1000{\AA}$ thick AlGaAs buffer layer under n-GaAs active layer. The calculation shows that the leakage current through GaAs substrate is significantly reduced by the buffer layer.

  • PDF

Performance enhancement of Doherty power amplifier with drain bias line (바이어스 단에 따른 Doherty 전력증폭기의 성능개선)

  • Jang, Pil-Seon;Bang, Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.89-90
    • /
    • 2007
  • In this paper, we propose Doherty amplifier with proper drain bias line. By $\lambda$/4 microstrip line, IMD is eliminated. Also output power of amplifier is reduced in wanted bandwidth. For linearity improvement, we design drain bias with narrow $\lambda$/4 microstrip line. We observe that gain characteristics improve 1dB and $3^{rd}/5^{th}$ IMD characteristics reduce 5dB/10dB.

  • PDF

A Study on Improvement of a-Si:H TFT Operating Speed

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.42-44
    • /
    • 2007
  • The a-Si:H TFTs decreasing parasitic capacitance of source-drain is fabricated on glass. The structure of a-Si:H TFTs is inverted staggered. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr) $1500{\AA}$ under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photoresistor on gate electrode in sequence, respectively. The thickness of these, thin films is formed with a-SiN:H ($2000{\mu}m$), a-Si:H($2000{\mu}m$) and $n^+a-Si:H$ ($500{\mu}m$). We have deposited $n^+a-Si:H$, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the $n^+a-Si:H$ layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFTs decreasing parasitic capacitance of source-drain show drain current of $8{\mu}A$ at 20 gate voltages, $I_{on}/I_{off}$ ratio of ${\sim}10^8$ and $V_{th}$ of 4 volts.

An experimental study on the evaluation of discharge capacity for vertical plastic drain board (연직배수재의 통수능력평가를 위한 실험적 연구)

  • Kim, Joonseok;Lee, Kangil
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.483-490
    • /
    • 2017
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to obtain the area for development with good ground condition. Various kinds of vertical drain technologies such as sand drain, sand compaction pile, packed drain, PVD are commercially available to improve the soft ground. Discharge capacity is the important factor of vertical drains. However, under field conditions, discharge capacity is changed with various reasons, such as soil condition, overburden pressure, and so on. In this paper, the experimental study was carried out to estimate the discharge capacity of four different types of PBD, PBD for double core PBD, deep type PBD, X type PBD, general type PBD. Characteristics of the discharge capacity for the surcharge load and hydraulic gradient were analysed. The double core PBD was excellent for discharge capacity in this study.

Reduction of Barrier Height between Ni-silicide and p+ source/drain for High Performance PMOSFET (고성능 PMOSFET을 위한 Ni-silicide와 p+ source/drain 사이의 barrier height 감소)

  • Kong, Sun-Kyu;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-157
    • /
    • 2008
  • As the minimum feature size of semiconductor devices scales down to nano-scale regime, ultra shallow junction is highly necessary to suppress short channel effect. At the same time, Ni-silicide has attracted a lot of attention because silicide can improve device performance by reducing the parasitic resistance of source/drain region. Recently, further improvement of device performance by reducing silicide to source/drain region or tuning the work function of silicide closer to the band edge has been studied extensively. Rare earth elements, such as Er and Yb, and Pd or Pt elements are interesting for n-type and p-type devices, respectively, because work function of those materials is closer to the conduction and valance band, respectively. In this paper, we increased the work function between Ni-silicide and source/drain by using Pd stacked structure (Pd/Ni/TiN) for high performance PMOSFET. We demonstrated that it is possible to control the barrier height of Ni-silicide by adjusting the thickness of Pd layer. Therefore, the Ni-silicide using the Pd stacked structure could be applied for high performance PMOSFET.

  • PDF