• Title/Summary/Keyword: Drain engineering

Search Result 987, Processing Time 0.025 seconds

Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials (소스 및 드레인 전극 재료에 따른 비정질 InGaZnO 박막 트랜지스터의 소자 열화)

  • Lee, Ki Hoon;Kang, Tae Gon;Lee, Kyu Yeon;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2017
  • In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and $I_{ON}/I_{OFF}$. From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.

A Study on Poly-Si TFT characteristics with string structure for 3D SONOS NAND Flash Memory Cell (3차원 SONOS 낸드 플래쉬 메모리 셀 적용을 위한 String 형태의 폴리실리콘 박막형 트랜지스터의 특성 연구)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.7-11
    • /
    • 2017
  • In this paper, we have studied the characteristics of NAND Flash memory in SONOS Poly-Si Thin Film Transistor (Poly-Si TFT) device. Source/drain junctions(S/D) of cells were not implanted and selective transistors were located in the end of cells. We found the optimum conditions of process by means of the estimation for the doping concentration of channel and source/drain of selective transistor. As the doping concentration was increased, the channel current was increased and the characteristic of erase was improved. It was believed that the improvement of erase characteristic was probably due to the higher channel potential induced by GIDL current at the abrupt junction. In the condition of process optimum, program windows of threshold voltages were about 2.5V after writing and erasing. In addition, it was obtained that the swing value of poly Si TFT and the reliability by bake were enhanced by increasing process temperature of tunnel oxide.

Design of the Adaptive Learning Circuit by Enploying the MFSFET (MFSFET 소자를 이용한 Adaptive Learning Curcuit 의 설계)

  • Lee, Kook-Pyo;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.1-12
    • /
    • 2001
  • The adaptive learning circuit is designed on the basis of modeling of MFSFET (Metal-Ferroelectric-Semiconductor FET) and the numerical results are analyzed. The output frequency of the adaptive learning circuit is inversely proportional to the source-drain resistance of MFSFET and the capacitance of the circuit. The saturated drain current with input pulse number is analogous to the ferroelectric polarization reversal. It indicates that the ferroelectric polarization plays an important role in the drain current control of MFSFET. The output frequency modulation of the adaptive learning circuit is investigated by analyzing the source-drain resistance of MFSFET as functions of input pulse numbers in the adaptive learning circuit and the dimensionality factor of the ferroelectric thin film. From the results, the frequency modulation characteristic of the adaptive learning circuit are confirmed. In other words, adaptive learning characteristics which means a gradual frequency change of output pulse with the progress of input pulse are confirmed. Consequently it is shown that our circuit can be used effectively in the neuron synapses of nueral networks.

  • PDF

Dependence of Drain Induced Barrier Lowering for Ratio of Channel Length vs. Thickness of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 채널길이와 두께 비에 따른 DIBL 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1399-1404
    • /
    • 2015
  • This paper analyzed the phenomenon of drain induced barrier lowering(DIBL) for the ratio of channel length vs. thickness of asymmetric double gate(DG) MOSFET. DIBL, the important secondary effect, is occurred for short channel MOSFET in which drain voltage influences on potential barrier height of source, and significantly affects on transistor characteristics such as threshold voltage movement. The series potential distribution is derived from Poisson's equation to analyze DIBL, and threshold voltage is defined by top gate voltage of asymmetric DGMOSFET in case the off current is 10-7 A/m. Since asymmetric DGMOSFET has the advantage that channel length and channel thickness can significantly minimize, and short channel effects reduce, DIBL is investigated for the ratio of channel length vs. thickness in this study. As a results, DIBL is greatly influenced by the ratio of channel length vs. thickness. We also know DIBL is greatly changed for bottom gate voltage, top/bottom gate oxide thickness and channel doping concentration.

Study on performance verification of dual-purpose rockbolt for reinforcement and drainage (지반 보강과 배수를 위한 이중기능 록볼트 성능 검증에 관한 연구)

  • Jung, Young-Hoon;Kim, Doo-Rae;Kim, Kyeong-Cheol;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.869-886
    • /
    • 2018
  • Rockbolt is one of the most common supports used to reinforce discontinuous rock during underground excavation. Extra drain pipes are installed to improve excavation workability and the anchorage of rockbolts in water bearing ground. The drain pipe is effective in improving the workability by providing drainage path, but it is difficult to expect the reinforcement effect, increasing disturbance of the discontinuous rock mass and the construction cost. To solve this problem, dual purpose rockbolt (DPR) has been developed for the reinforcement of rock and the drainage of ground water. DPR was able to improve the mechanical and hydraulic stability of the rocks quickly and economically. Two kinds of DPRs using FRP (Fiber Reinforced Plastic) and steel were investigated for the mechanical and hydraulic performance. Also, the workability and stability of DPR were analyzed.

Analysis of Heavy Metal Contaminated Soils Remediation Using Reactive Drains (반응성 배수재를 이용한 중금속 오염토양의 정화효율 분석)

  • Park, Jeongjun;Choi, Changho;Shin, Eunchul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2013
  • This paper presents the analysis condition of remediation technique of contaminated fine-grained soil and physical properties of bio-degradable drain for analysis site applicability using bio-degradable drain method. As the result, two kinds of developed degradable drains (cylindricality shaped and harmonica shaped) are satisfied the Korean Industrial Standard. And the cylindricality shaped drain has an excellent discharge capacity than that of another one. By the results of laboratory test, the citric acid is chosen as the washing agent because it has low toxicity, so it is able to minimize harmful influence to environment. Furthermore the subject contaminants were selected as Cd, Cu and Pb. Based on the field pilot test results, the most remedial efficiency is the use of reactive material applied in bio-degradable drain method with the process of injecting the washing agent and extraction of contaminated fluid.

Poly-Si Thin Film Transistor with poly-Si/a-Si Double Active Layer Fabricated by Employing Native Oxide and Excimer Laser Annealing (자연 산화막과 엑시머 레이저를 이용한 Poly-Si/a-Si 이중 박막 다결정 실리콘 박막 트랜지스터)

  • Park, Gi-Chan;Park, Jin-U;Jeong, Sang-Hun;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2000
  • We propose a simple method to control the crystallization depth of amorphous silicon (a-Si) deposited by PECVD or LPCVD during the excimer laser annealing (ELA). Employing the new method, we have formed poly-Si/a-Si double film and fabricated a new poly-Si TFT with vertical a-Si offsets between the poly-Si channel and the source/drain of TFT without any additional photo-lithography process. The maximum leakage current of the new poly-Si TFT decreased about 80% due to the highly resistive vertical a-Si offsets which reduce the peak electric field in drain depletion region and suppress electron-hole pair generation. In ON state, current flows spreading down through broad a-Si cross-section in the vertical a-Si offsets and the current density in the drain depletion region where large electric field is applied is reduced. The stability of poly-Si TFT has been improved noticeably by suppressing trap state generation in drain region which is caused by high current density and large electric field. For example, ON current of the new TFT decreased only 7% at a stress condition where ON current of conventional TFT decreased 89%.

  • PDF

Experimental Study on Drainage Characteristics of PET Aggregates (PET 인공골재의 배수특성에 관한 실험적 연구)

  • Shin, Eun-Chul;Shin, Hui-Su;Kim, Kyeong-Sig;Kim, Ki-Sung;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 2016
  • PET aggregates were produced by mixing heated PET flakes with frictional soils. Using these artificially-made PET aggregates, horizontal drain tests in the laboratory, pilot scale model tests were conducted for the evaluation of the drainage characteristics of PET aggregates. Laboratory horizontal drain tests were conducted under twenty different conditions varying mixing ratios and surcharged pressures. Moreover, by utilizing the aggregates with a mixing ratio producing the lowest variation in terms of permeability against applied load, large scale tests were performed. Reliability of the test results was evaluated from comparison with the results of the laboratory horizontal drain test.

Simulation Study on the Breakdown Enhancement for InAlAs/InGaAs/GaAs MHEMTs with an InP-Etchstop Layer (InP 식각정지층을 갖는 InAlAs/InGaAs/GaAs MHEMT 소자의 항복 전압 개선에 관한 연구)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.23-27
    • /
    • 2013
  • This paper is for enhancing the breakdown voltage of MHEMTs with an InP-etchstop layer. Gate-recess structures has been simulated and analyzed for the breakdown of the devices with the InP-etchstop layer. The fully removed recess structure in the drain side of MHEMT shows that the breakdown voltage enhances from 2V to almost 4V and that the saturation current at gate voltage of 0V is reduced from 90mA to 60mA at drain voltage of 2V. This is because the electron-captured negatively fixed charges at the drain-side interface between the InAlAs barrier layer and the $Si_3N_4$ passivation layer deplete the InGaAs channel layer more and thus decreases the electron current passing the channel layer. In the paper, the fully-recessed asymmetric gate-recess structure at the drain side shows the on-breakdown voltage enhancement from 2V to 4V in the MHEMTs.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Intensity (채널도핑강도에 대한 DGMOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.888-891
    • /
    • 2011
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping intensity.

  • PDF