• Title/Summary/Keyword: Dots in a well

Search Result 74, Processing Time 0.024 seconds

A Study on Electrical and Optical Characteristics of InAs/GaAs Self-organized Quantum Dots (InAs/GaAs Self-organized Quantum Dots의 전기.광학적 특성 연구)

  • 김기홍;박종도;배인호;손정식;문병연;이주인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2001
  • We present a detailed of the interband transitions of InAs/GaAs self-organized quantum dots(QDs) based on surface photovoltage(SPV), photoreflactance(PR) and photoluminescence(PL) spectroscopies. At room temperature, interband absorption transitions of QDs have been observed by using SPV spectrum, which clearly exhibits three well-resolved absorption transitions of QDs have been observed by using SPV spectrum, which clearly exhibits three well-resolved absorption peaks. The absorption line shape is Gaussian-like. Furthermore, the corresponding interband transitions are also observed in PR and PL experiments at 77K.

  • PDF

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol;Yang, Heesun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.449-469
    • /
    • 2017
  • The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size (GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성)

  • Lee, Seong-Hun;Kim, Won-Mok;Sin, Dong-Uk;Jo, Seong-Hun;Jeong, Byeong-Gi;Lee, Taek-Seong;Lee, Gyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

Optical Characteristic of InAs Quantum Dots in an InGaAs/GaAs Well Structure (광학적 방법으로 측정된 양자우물 안의 InAs 양자점의 에너지 준위)

  • Nam H.D.;Kwack H.S.;Doynnette L.;Song J.D.;Choi W.J.;Cho W.J.;Lee J.I.;Cho Y.H.;Julien F.H.;Choe J.W.;Yang H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.209-215
    • /
    • 2006
  • We investigated the optical property and the electronic subband structure of InAs quantum dots in an InAsGa/GaAs well structure utilizing photoluminescence (PL), PL excitation (PLE) and near infrared transmission spectroscopy. From transmission and PLE spectra, we found three bound states in the InAs quantum dot and two bound states in InGaAs/GaAs quantum well, and correlated to the results of intersubband transitions observed in photocurrent spectrum.

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • Man, Min-Tan;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF

Structural Characteristics on InAs Quantum Dots multi-stacked on GaAs(100) Substrates

  • Roh, Cheong-Hyun;Park, Young-Ju;Kim, Eun-Kyu;Shim, Kwang-Bo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The InAs self-assembled quantun dots (SAQDS) were grown on a GaAs(100) substrate using a molecular beam epitaxy (MBE) technique. The InAs QDs were multi-stacked to have various layer structures of 1, 3, 6, 10, 15 and 20 layers, where the thickness of the GaAs spacer and InAs QD layer were 20 monolayers (MLs) and 2 MLs, respectively. The nanostructured feature was characterized by photoluminescence (PL) and scanning transmission electron microscopy (STEM). It was found that the highest PL intensity was obtained from the specimen with 6 stacking layers and the energy of the PL peak was split with increasing the number of stacking layers. The STEM investigation exhibited that the quantum dots in the 6 stacking layer structure were well aligned in vertical columns without any deflect generation, whereas the volcano-like deflects were formed vertically along the growth direction over 10 periods of InAs stacking layers.

  • PDF

New Records of Five Ennomine Moths (Lepidoptera: Geometridae; Ennominae) from Korea

  • Choi, Sei-Woong;Kim, Sung-Soo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.31 no.2
    • /
    • pp.122-127
    • /
    • 2015
  • The subfamily Ennominae is one of the most species-rich taxa of Geometridae that include more than 9,700 species worldwide and over 280 species in South Korea. Herein, we present the first report of five species of Ennominae. Abraxas flavisinuata can be characterized by the white wings, a thick black postmedial line that is medially and dorsally broken with an orange band, large rounded black discal dots on the forewing, and a black dotted postmedial line on the hindwing. Lomographa claripennis can be characterized by the whitish wings, the black undulating postmedial line as well as the minute blackish discal dot on the forewing, and the black undulating postmedial line with a minute black discal dot on the hindwing. Arichanna tetrica can be characterized by the grayish forewings, thick black transverse ante- and postmedial lines, a large blackish discal dot, whitish apical streak on the forewing, and scattered black dots on the whitish hindwing. Apocleora rimosa can be characterized by the brown ground color of the fore- and hindwings, the black slanted ante- and postmedial lines of the forewing, and two black medial lines on the hindwing. Ourapteryx japonica can be characterized by the white wings, the dark brown transverse ante- and postmedial lines with a long discal dot on the forewing, and the dark brownish transverse antemedial line as well as a termen that has a sharp white tail with one large dark reddish dot and one small black dot on the hindwing.

Analysis of In/Ga Inter-Diffusion Effect on the Thermodynamical Properties of InAs Quantum Dot

  • Abdellatif, M.H.;Song, Jin Dong;Lee, Donghan;Jang, Yudong
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.158-161
    • /
    • 2016
  • Debye temperature is an important thermodynamical factor in quantum dots (QDs); it can be used to determine the degree of homogeneity of a QD structure as well as to study the interdiffusion mechanism during growth. Direct estimation of the Debye temperature can be obtained using the Varshni relation. The Varshni relation is an empirical formula that can interpret the change of emission energy with temperature as a result of phonon interaction. On the other hand, phonons energy can be calculated using the Fan Expression. The Fan expression and Varshni relation are considered equivalent at a temperature higher than Debye temperature for InAs quantum dot. We investigated InAs quantum dot optically, the photoluminescence spectra and peak position dependency on temperature has been discussed. We applied a mathematical treatment using Fan expression, and the Varshni relation to obtain the Debye temperature and the phonon energy for InAs quantum dots sample. Debye temperature increase about double compared to bulk crystal. We concluded that the In/Ga interdiffusion during growth played a major role in altering the quantum dot thermodynamical parameters.