Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.6.03

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices  

Han, Chang-Yeol (Department of Materials Science and Engineering, Hongik University)
Yang, Heesun (Department of Materials Science and Engineering, Hongik University)
Publication Information
Abstract
The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.
Keywords
Quantum dots; Core/shell heterostructure; Light-emitting diodes; Color purity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Y. Yang, D. W. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. L. Zhao, H. V. Demir, and X. W. Sun, "Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes," Adv. Mater., 24 [30] 4180-5 (2012).   DOI
2 T. Kim, S. W. Kim, M. Kang, and S. W. Kim, "Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller," J. Phys. Chem. Lett., 3 [2] 214-8 (2012).   DOI
3 E. Bang, Y. Choi, J. Cho, Y. H. Suh, H. W. Ban, J. S. Son, and J. Park, "Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor," Chem. Mater., 29 [10] 4236-43 (2017).   DOI
4 K. Lim, H. S. Jang, and K. Woo, "Synthesis of Blue Emitting InP/ZnS Quantum Dots through Control of Competition between Etching and Growth," Nanotechnology, 23 [48] 485609 (2012).   DOI
5 S. L. Lin, N. Pradhan, Y. J. Wang, and X. G. Peng, "High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors," Nano Lett., 4 [11] 2261-4 (2004).   DOI
6 P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, and A. Pron, "Luminescent ZnSe Nanocrystals of High Color Purity," Mater. Chem. Phys., 84 [1] 10-3 (2004).   DOI
7 W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, "Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes," Nat. Commun., 4, 2661 (2013).   DOI
8 F. T. Rabouw, R. Vaxenburg, A. A. Bakulin, R. J. A. van Dijk-Moes, H. J. Bakker, A. Rodina, E. Lifshitz, A. L. Efros, A. F. Koenderink, and D. Vanmaekelbergh, "Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots," ACS Nano, 9 [10] 10366-76 (2015).   DOI
9 Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, " "Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking," J. Am. Chem. Soc., 130 [15] 5026-27 (2008).   DOI
10 K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, "Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices," ACS Nano, 7 [8] 7295-302 (2013).   DOI
11 D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, "Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device," ACS Nano, 11 [2] 1982-90 (2017).   DOI
12 K. Ding, H. T. Chen, L. W. Fan, B. Wang, Z. Huang, S. Q. Zhuang, B. Hu, and L. Wang, "Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes," ACS Appl. Mater. Interfaces, 9 [23] 20231-38 (2017).   DOI
13 W. K. Bae, K. Char, H. Hur, and S. Lee, "Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients," Chem. Mater., 20 [2] 531-39 (2008).   DOI
14 J. P. Park, J. J. Lee, and S. W. Kim, "Highly Luminescent InP/GaP/ZnS QDs Emitting in the Entire Color Range via a Heating Up Process," Sci. Rep., 6, 30094 (2016).   DOI
15 W. S. Song and H. Yang, "Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots," Chem. Mater., 24 [10] 1961-67 (2012).   DOI
16 H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, "Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO," J. Phys. Chem. B, 108 [44] 17119-23 (2004).   DOI
17 M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O'Brien, "Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals," Chem. Mater., 27 [11] 3797-800 (2015).   DOI
18 Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, "Efficient Quantum Dot Light-Emitting Diodes with a $Zn_{0.85}Mg_{0.15}O$ Interfacial Modification Layer," Nanoscale, 9, 8962-69 (2017).   DOI
19 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe) ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites," J. Phys. Chem. B, 101 [46] 9463-75 (1997).   DOI
20 Z. A. Peng and X. G. Peng, "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals using CdO as Precursor," J. Am. Chem. Soc., 123 [1] 183-84 (2001).   DOI
21 J. Chang and E. R. Waclawik, "Colloidal Semiconductor Nanocrystals: Controlled Synthesis and Surface Chemistry in Organic Media," RSC Adv., 4 [45] 23505-27 (2014).   DOI
22 V. Klimov, D. McBranch, C. Leatherdale, and M. Bawendi, "Electron and Hole Relaxation Pathways in Semiconductor Quantum Dots," Phys. Rev. B, 60 [19] 13740 (1999).   DOI
23 X. Y. Wang, L. H. Qu, J. Y. Zhang, X. G. Peng, and M. Xiao, "Surface-Related Emission in Highly Luminescent CdSe Quantum Dots," Nano Lett., 3 [8] 1103-6 (2003).   DOI
24 M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, "Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States," J. Chem. Phys., 96 [2] 946-54 (1992).   DOI
25 J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, "Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes," Adv. Mater., 19 [15] 1927-32 (2007).   DOI
26 J. Cho, Y. K. Jung, J. K. Lee, and H. S. Jung, "Highly Efficient Blue-Emitting CdSe-Derived Core/Shell Gradient Alloy Quantum Dots with Improved Photoluminescent Quantum Yield and Enhanced Photostability," Langmuir, 33 [15] 3711-19 (2017).   DOI
27 B. Huang, R. L. Xu, N. Z. Zhuo, L. Zhang, H. B. Wang, Y. P. Cui, and J. Y. Zhang, " 'Giant' Red and Green Core/ Shell Quantum Dots with High Color Purity and Photostability," Superlattices Microstruct., 91 201-7 (2016).   DOI
28 X. B. Wang, W. W. Li, and K. Sun, "Stable Efficient CdSe/ CdS/ZnS Core/Multi-Shell Nanophosphors Fabricated Through a Phosphine-Free Route for White Light-Emitting-Diodes with High Color Rendering Properties," J. Mater. Chem., 21 [24] 8558-65 (2011).   DOI
29 M. A. Hines and P. Guyot-Sionnest, "Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals," J. Phys. Chem., 100 [2] 468-71 (1996).   DOI
30 S. Kim, J. Park, T. Kim, E. Jang, S. Jun, H. Jang, B. Kim, and S. W. Kim, "Reverse Type-I ZnSe/InP/ZnS Core/Shell/ Shell Nanocrystals: Cadmium-Free Quantum Dots for Visible Luminescence," Small, 7 [1] 70-3 (2011).   DOI
31 S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donega, "Highly Luminescent Water-Soluble CdTe Quantum Dots," Nano Lett., 3 [4] 503-7 (2003).   DOI
32 F. Dubois, B. Mahler, B. Dubertret, E. Doris, and C. Mioskowski, "A Versatile Strategy for Quantum Dot Ligand Exchange," J. Am. Chem. Soc., 129 [3] 482-83 (2007).   DOI
33 W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, "Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent," Chem. Mater., 16 [17] 3318-22 (2004).   DOI
34 H. B. Shen, X. W. Bai, A. Wang, H. Z. Wang, L. Qian, Y. X. Yang, A. Titov, J. Hyvonen, Y. Zheng, and L. S. Li, "High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality $ZnxCd_{1-x}S/ZnS$ Core/Shell Quantum Dots," Adv. Funct. Mater., 24 [16] 2367-73 (2014).   DOI
35 B. H. Dong, L. X. Cao, G. Su, and W. Liu, "Facile Synthesis of Highly Luminescent UV-Blue Emitting ZnSe/ZnS Core/Shell Quantum Dots by a Two-Step Method," Chem. Commun., 46 [39] 7331-33 (2010).   DOI
36 C. Y. Xiang, W. Koo, S. Chen, F. So, X. Liu, X. X. Kong, and Y. J. Wang, "Solution Processed Multilayer Cadmium-Free Blue/Violet Emitting Quantum Dots Light Emitting Diodes," Appl. Phys. Lett., 101 [5] 053303 (2012).   DOI
37 Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, "Cadmium-Free Quantum Dots Based Violet Light-Emitting Diodes: High-Efficiency and Brightness via Optimization of Organic Hole Transport Layers," Org. Electron., 25, 178-83 (2015).   DOI
38 A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. S. Li, "Bright, Efficient, and Color-Stable Violet ZnSe-Based Quantum Dot Light-Emitting Diodes," Nanoscale, 7 [7] 2951-59 (2015).   DOI
39 Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, "High-Efficiency Light-Emitting Devices Based on Quantum Dots with Tailored Nanostructures," Nat. Photonics, 9 [4] 259-66 (2015).   DOI
40 S. J. Wang, Y. M. Guo, D. D. Feng, L. Chen, Y. Fang, H. B. Shen, and Z. L. Du, "Bandgap Tunable $Zn_{1-x}Mg_xO$ Thin Films as Electron Transport Layers for High Performance Quantum Dot Light-Emitting Diodes," J. Mater. Chem. C, 5 [19] 4724-30 (2017).   DOI
41 H. B. Shen, W. R. Cao, N. T. Shewmon, C. C. Yang, L. S. Li, and J. G. Xue, "High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes," Nano Lett., 15 [2] 1211-16 (2015).   DOI
42 Z. H. Li, Y. X. Hu, H. B. Shen, Q. L. Lin, L. Wang, H. Z. Wang, W. L. Zhao, and L. S. Li, "Efficient and Long-Life Green Light-Emitting Diodes Comprising Tridentate Thiol Capped Quantum Dots," Laser Photonics Rev., 11 [1] 1600227 (2017).   DOI
43 B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, "High-Efficiency Quantum-Dot Light-Emitting Devices with Enhanced Charge Injection," Nat. Photonics, 7 [5] 407-12 (2013).   DOI
44 J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, J. Shin, J. B. Park, J. H. Choi, K. Cho, S. M. Park, T. Joo, and S. Kim, "ZnTe/ZnSe (Core/ Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties," Chem. Mater., 22 [1] 233-40 (2010).   DOI
45 D. Battaglia, J. J. Li, Y. J. Wang, and X. G. Peng, "Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells," Angew. Chem. Int. Ed., 42 [41] 5035-39 (2003).   DOI
46 X. H. Zhong, R. G. Xie, Y. Zhang, T. Basche, and W. Knoll, "High-Quality Violet-to-Red-Emitting ZnSe/CdSe Core/ Shell Nanocrystals," Chem. Mater., 17 [16] 4038-42 (2005).   DOI
47 S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, "Type-II Quantum Dots: CdTe/CdSe (Core/Shell) and CdSe/ZnTe (Core/Shell) Heterostructures," J. Am. Chem. Soc., 125 [38] 11466-67 (2003).   DOI
48 B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, "'Giant' CdSe/ CdS Core/Shell Nanocrystal Quantum Dots As Efficient Electroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance," Nano Lett., 12 [1] 331-36 (2012).   DOI
49 X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/ CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc., 119 [30] 7019-29 (1997).   DOI
50 F. Zhang, H. Z. Zhong, C. Chen, X. G. Wu, X. M. Hu, H. L. Huang, J. B. Han, B. S. Zou, and Y. P. Dong, "Brightly Luminescent and Color-Tunable Colloidal $CH_3NH_3PbX_3$ (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS Nano, 9 [4] 4533-42 (2015).   DOI
51 J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr, and O. F. Mohammed, "Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single-and Two-Photon-Induced Amplified Spontaneous Emission," J. Phys. Chem. Lett., 6 [24] 5027-33 (2015).   DOI
52 F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, "Xray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water," ACS Nano, 10 [1] 1224-30 (2016).   DOI
53 Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, "Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots," Nat. Photonics, 1 [12] 717-22 (2007).   DOI
54 W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, "R/G/B/Natural White Light Thin Colloidal Quantum Dot-Based Light-Emitting Devices," Adv. Mater., 26 [37] 6387-93 (2014).   DOI
55 W. Y. Ji, P. T. Jing, W. Xu, X. Yuan, Y. J. Wang, J. L. Zhao, and A. K. Y. Jen, "High Color Purity ZnSe/ZnS Core/Shell Quantum Dot Based Blue Light Emitting Diodes with an Inverted Device Structure," Appl. Phys. Lett., 103 [5] 053106 (2013).   DOI
56 W. Y. Ji, P. T. Jing, Y. Fan, J. L. Zhao, Y. J. Wang, and X. G. Kong, "Cadmium-Free Quantum Dot Light Emitting Devices: Energy-Transfer Realizing Pure Blue Emission," Opt. Lett., 38 [1] 7-9 (2013).   DOI
57 Y. S. Liu, Y. H. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, "pH-Sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells," J. Phys. Chem. C, 111 [7] 2872-78 (2007).   DOI
58 A. Y. Nazzal, X. Y. Wang, L. H. Qu, W. Yu, Y. J. Wang, X. G. Peng, and M. Xiao, "Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films," J. Phys. Chem. B, 108 [18] 5507-15 (2004).   DOI
59 P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum," Nano Lett., 9 [7] 2532-36 (2009).   DOI
60 A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, "The Effect of a Common Purification Procedure on the Chemical Composition of the Surfaces of CdSe Quantum Dots Synthesized with Trioctylphosphine Oxide," J. Phys. Chem. C, 114 [2] 897-906 (2010).   DOI
61 K. Kim, J. Y. Woo, S. Jeong, and C. S. Han, "Photoenhancement of a Quantum Dot Nanocomposite via UV Annealing and its Application to White LEDs," Adv. Mater., 23 [7] 911-14 (2011).   DOI
62 D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H. Weller, "CdSe/CdS/ZnS and CdSe/ZnSe/ ZnS Core-Shell-Shell Nanocrystals," J. Phys. Chem. B, 108 [49] 18826-31 (2004).   DOI
63 S. S. Xu, H. B. Shen, C. H. Zhou, H. Yuan, C. S. Liu, H. Z. Wang, L. Ma, and L. S. Li, "Effect of Shell Thickness on the Optical Properties in $CdSe/CdS/Zn_{0.5}Cd_{0.5}S/ZnS$ and $CdSe/CdS/ZnxCd_{1-x}S/ZnS$ Core/Multishell Nanocrystals," J. Phys. Chem. C, 115 [43] 20876-81 (2011).   DOI
64 J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, "InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability," Chem. Mater., 23 [20] 4459-63 (2011).   DOI
65 A. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. Carroll, and L. E. Brus, "Nucleation and Growth of Cadmium Selendie on Zinc Sulfide Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media," J. Am. Chem. Soc., 112 [4] 1327-32 (1990).   DOI
66 D. Zhao, Z. K. He, W. H. Chan, and M. M. F. Choi, "Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-L-cysteine Via Hydrothermal Method," J. Phys. Chem. C, 113 [4] 1293-300 (2009).   DOI
67 J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, and M. G. Bawendi, "Blue Luminescence from (CdS)ZnS Core-Shell Nanocrystals," Angew. Chem. Int. Ed., 43 [16] 2154-58 (2004).   DOI
68 X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White, and W. Knoll, "Composition-Tunable $ZnxCd_{1-x}Se$ Nanocrystals with High Luminescence and Stability," J. Am. Chem. Soc., 125 [28] 8589-94 (2003).   DOI
69 R. G. Xie, U. Kolb, J. X. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core $CdS/Zn_{0.5}Cd_{0.5}S/ZnS$ Multishell Nanocrystals," J. Am. Chem. Soc., 127 [20] 7480-88 (2005).   DOI
70 K. H. Lee, J. H. Lee, H. D. Kang, B. Park, Y. Kwon, H. Ko, C. Lee, J. Lee, and H. Yang, "Over 40 cd/A Efficient Green Quantum Dot Electroluminescent Device Comprising Uniquely Large-Sized Quantum Dots," ACS Nano, 8 [5] 4893-901 (2014).   DOI
71 M. Green, "Solution Routes to III-V Semiconductor Quantum Dots," Curr. Opin. Solid State Mater. Sci., 6 [4] 355-63 (2002).   DOI
72 X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, "Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer," Nano Lett., 16 [2] 1415-20 (2016).   DOI
73 H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, and R. S. Liu, "Mesoporous Silica Particles Integrated with All-Inorganic $CsPbBr_3$ Perovskite Quantum-Dot Nanocomposites (MPPQDs) with High Stability and Wide Color Gamut Used for Backlight Display," Angew. Chem. Int. Ed., 55 [28] 7924-29 (2016).   DOI
74 A. F. Wang, X. G. Yan, M. Zhang, S. B. Sun, M. Yang, W. Shen, X. Q. Pan, P. Wang, and Z. T. Deng, "Controlled Synthesis of Lead-Free and Stable Perovskite Derivative $Cs_2SnI_6$ Nanocrystals via a Facile Hot-Injection Process," Chem. Mater., 28 [22] 8132-40 (2016).   DOI
75 J. Xing, F. Yan, Y. W. Zhao, S. Chen, H. K. Yu, Q. Zhang, R. G. Zeng, H. V. Demir, X. W. Sun, A. Huan, and Q. H. Xiong, "High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles," ACS Nano, 10 [7] 6623-30 (2016).   DOI
76 J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, and H. B. Zeng, "Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)," Adv. Mater., 27 [44] 7162-67 (2015).   DOI
77 G. R. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Pena, S. C. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, and Z. K. Tan, "Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method," Adv. Mater., 28 [18] 3528-34 (2016).   DOI
78 T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Bohm, "Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals," J. Am. Chem. Soc., 138 [9] 2941-44 (2016).   DOI
79 K. H. Lee, J. H. Lee, H. D. Kang, C. Y. Han, S. M. Bae, Y. Lee, J. Y. Hwang, and H. Yang, "Highly Fluorescence-Stable Blue CdZnS/ZnS Quantum Dots against Degradable Environmental Conditions," J. Alloys Compd., 610 511-16 (2014).   DOI
80 S. Jun and E. Jang, "Bright and Stable Alloy Core/Multishell Quantum Dots," Angew. Chem. Int. Ed., 52 [2] 679-82 (2013).   DOI
81 H. W. Liu, Z. N. Wu, J. R. Shao, D. Yao, H. Gao, Y. Liu, W. L. Yu, H. Zhang, and B. Yang, "$CsPb_xMn_{1-x}Cl_3$ Perovskite Quantum Dots with High Mn Substitution Ratio," ACS Nano, 11 [2] 2239-47 (2017).   DOI
82 D. Y. Jo and H. Yang, "Synthesis of Highly White-Fluorescent Cu-Ga-S Quantum Dots for Solid-State Lighting Devices," Chem. Commun., 52 [4] 709-12 (2016).   DOI
83 W. S. Song, J. H. Kim, J. H. Lee, H. S. Lee, Y. R. Do, and H. Yang, "Synthesis of Color-Tunable Cu-In-Ga-S Solid Solution Quantum Dots with High Quantum Yields for Application to White Light-Emitting Diodes," J. Mater. Chem., 22 [41] 21901-8 (2012).   DOI
84 B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. S. Bando, S. Y. Yang, and B. S. Zou, "Highly Emissive and Color-Tunable $CuInS_2$-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance," Adv. Funct. Mater., 22 [10] 2081-88 (2012).   DOI
85 K. Kim, H. Lee, J. Ahn, and S. Jeong, "Highly Luminescing Multi-Shell Semiconductor Nanocrystals InP/ZnSe/ ZnS," Appl. Phys. Lett., 101 [7] 073107 (2012).   DOI
86 J. Pan, L. N. Quan, Y. B. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. J. Yuan, L. Sinatra, N. M. Alyami, J. K. Liu, E. Yassitepe, Z. Y. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, and O. M. Bakr, "Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering," Adv. Mater., 28 [39] 8718-25 (2016).   DOI
87 X. L. Zhang, H. Liu, W. G. Wang, J. B. Zhang, B. Xu, K. L. Karen, Y. J. Zheng, S. Liu, S. M. Chen, K. Wang, and X. W. Sun, "Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic-Inorganic Mixed Cations," Adv. Mater., 29 [18] 1606405 (2017).   DOI
88 M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, "Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots," Chem. Mater., 27 [13] 4893-98 (2015).   DOI
89 J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, "High-Efficiency Red Electroluminescent Device Based on Multishelled InP Quantum Dots," Opt. Lett., 41 [17] 3984-7 (2016).   DOI
90 H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, "Cadmium-Free InP/ ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m-2," Small, 13 [13] 1603962 (2017).   DOI
91 S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, "Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes," J. Am. Chem. Soc., 134 [8] 3804-9 (2012).   DOI
92 F. Pietra, N. Kirkwood, L. De Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, and A. J. Houtepen, "Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-based Quantum Dots," Chem. Mater., 29 [12] 5192-9 (2017).   DOI
93 S. Koh, T. Eom, W. D. Kim, K. Lee, D. Lee, Y. K. Lee, H. Kim, W. K. Bae, and D. C. Lee, "Zinc-Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots," Chem. Mater., 29 [15] 6346-55 (2017).   DOI
94 Y. Zhang, C. A. Xie, H. P. Su, J. Liu, S. Pickering, Y. Q. Wang, W. W. Yu, J. K. Wang, Y. D. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. A. Xu, "Employing Heavy Metal-Free Colloidal Quantum Dots in Solution-Processed White Light-Emitting Diodes," Nano Lett., 11 [2] 329-32 (2011).   DOI
95 K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. Myoung, S. Y. Yim, and H. Yang, "Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer," ACS Nano, 9 [11] 10941-49 (2015).   DOI
96 J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, "Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure," Nano Lett., 12 [5] 2362-66 (2012).   DOI
97 T. Chiba, K. Hoshi, Y. J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata, and J. Kido, "High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment," Acs Appl. Mater. Interfaces, 9 [21] 18054-60 (2017).   DOI
98 J.-H. Kim, K.-H. Lee, D.-Y. Jo, Y. Lee, J. Y. Hwang, and H. Yang, "Cu-In-Ga-S Quantum Dot Composition-Dependent Device Performance of Electrically Driven Light-Emitting Diodes," Appl. Phys. Lett., 105 [13] 133104 (2014).   DOI
99 J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, "Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer," Chem. Mater., 27 [1] 197-204 (2015).   DOI
100 J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, "Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots," ACS Nano, 7 [10] 9019-26 (2013).   DOI
101 S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices," Nature, 420 [6917] 800-3 (2002).   DOI
102 C. Y. Ji, M. Lu, H. Wu, X. Y. Zhang, X. Y. Shen, X. Wang, Y. Zhang, Y. D. Wang, and W. W. Yu, "1,2-Ethanedithiol Treatment for $AgIn_5S_8/ZnS$ Quantum Dot Light Emitting Diodes with High Brightness," ACS Appl. Mater. Interfaces, 9 [9] 8187-93 (2017).   DOI
103 P. M. Allen and M. G. Bawendi, "Ternary I-III-VI Quantum Dots Luminescent in the Red to Near-Infrared," J. Am. Chem. Soc., 130 [29] 9240-41 (2008).   DOI
104 M. Ko, H. C. Yoon, H. Yoo, J. H. Oh, H. Yang, and Y. R. Do, "Highly Efficient Green Zn-Ag-In-S/Zn-In-S/ZnS QDs by a Strong Exothermic Reaction for Down-Converted Green and Tripackage White LEDs," Adv. Funct. Mater., 27 [4] 1602638 (2017).   DOI
105 J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, "Colloidal Quantum-Dot Light-Emitting Diodes with Metal-Oxide Charge Transport Layers," Nat. Photonics, 2 [4] 247-50 (2008).   DOI
106 L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, "Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution-Processed Multilayer Structures," Nat. Photonics, 5 [9] 543-48 (2011).   DOI
107 F. Garcia-Santamaria, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, "Breakdown of Volume Scaling in Auger Recombination in CdSe/CdS Heteronanocrystals: The Role of the Core Shell Interface," Nano Lett., 11 [2] 687-93 (2011).   DOI
108 W. K. Bae, L. A. Padilha, Y. S. Park, H. McDaniel, I. Robel, J. M. Pietryga, and V. I. Klimov, "Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination," ACS Nano, 7 [4] 3411-19 (2013).   DOI
109 J. H. Kim, D. Y. Jo, K. H. Lee, E. P. Jang, C. Y. Han, J. H. Jo, and H. Yang, "White Electroluminescent Lighting Device Based on a Single Quantum Dot Emitter," Adv. Mater., 28 [25] 5093-98 (2016).   DOI
110 J. H. Kim and H. Yang, "High-Efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding 7%," Chem. Mater., 28 [17] 6329-35 (2016).   DOI
111 D. B. Choi, S. Kim, H. C. Yoon, M. Ko, H. Yang, and Y. R. Do, "Color-Tunable Ag-In-Zn-S Quantum-Dot Light-Emitting Devices Realizing Green, Yellow and Amber Emissions," J. Mater. Chem. C, 5 [4] 953-59 (2017).   DOI
112 J. H. Li, L. M. Xu, T. Wang, J. Z. Song, J. W. Chen, J. Xue, Y. H. Dong, B. Cai, Q. S. Shan, B. N. Han, and H. B. Zeng, "50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite $CsPbBr_3$ QLEDs via Surface Ligand Density Control," Adv. Mater., 29 [5] 1603885 (2017).   DOI
113 A. I. Ekimov and A. A. Onushchenko, "Quantum Size Effect in Three-Dimensional Microscopic Semiconductor Crystals," Jetp Lett., 34 [6] 345-49 (1981).
114 E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, "White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights," Adv. Mater., 22 [28] 3076-80 (2010).   DOI
115 R. D. Zhu, Z. Y. Luo, H. W. Chen, Y. J. Dong, and S. T. Wu, "Realizing Rec. 2020 Color Gamut with Quantum Dot Displays," Opt. Express, 23 [18] 23680-93 (2015).   DOI
116 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites ($CsPbX_3$, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., 15 [6] 3692-96 (2015).   DOI
117 L. Brus, "Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State," J. Chem. Phys., 80 [9] 4403-9 (1984).   DOI
118 L. Brus, "Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory," J. Phys. Chem., 90 [12] 2555-60 (1986).   DOI
119 F. Hetsch, N. Zhao, S. V. Kershaw, and A. L. Rogach, "Quantum Dot Field Effect Transistors," Mater. Today, 16 [9] 312-25 (2013).   DOI
120 P. V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters," J. Phys. Chem. C, 112 [48] 18737-53 (2008).   DOI
121 Y. Liu, F. Li, Z. Xu, C. Zheng, T. Guo, X. Xie, L. Qian, D. Fu, and X. Yan, "Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Ink-jet Printing Technique," Acs Appl. Mater. Interfaces, 9 [30] 25506-12 (2017).   DOI
122 J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, "High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots," Nano Lett., 15 [6] 3793-99 (2015).   DOI
123 E. H Sargent, "Infrared Quantum Dots," Adv. Mater., 17 [5] 515-22 (2005).   DOI
124 Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, "Hydroxyl-Terminated CuInS2 Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes," Chem. Mater., 28 [4] 1085-91 (2016).   DOI
125 M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, "Wearable Red-Green-Blue Quantum Dot Light-Emitting Diode Array Using High-Resolution Intaglio Transfer Printing," Nat. Commun., 6, 7149 (2015).   DOI
126 C. Y. Han, K. H. Lee, M. S. Kim, J. W. Shin, J. S. Kim, J. H. Hwang, T. Kim, M. S. Oh, J. Kim, Y. R. Do, and H. Yang, "Solution-Processed Fabrication of Highly Transparent Mono-and Tri-Colored Quantum Dot-Light-Emitting Diodes," Org. Electron., 45, 145-50 (2017).   DOI
127 P. T. Jing, W. Y. Ji, Q. H. Zeng, D. Li, S. N. Qu, J. Wang, and D. D. Zhang, "Vacuum-Free Transparent Quantum Dot Light-Emitting Diodes with Silver Nanowire Cathode," Sci. Rep., 5, 12499 (2015).   DOI
128 H. Zhang, X. W. Sun, and S. M. Chen, "Over 100 cd/A Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure," Adv. Funct. Mater., 27 [21] 1700610 (2017).   DOI
129 V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer," Nature, 370 [6488] 354-57 (1994).   DOI
130 X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, "Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots," Nature, 515 [7525] 96-9 (2014).   DOI
131 A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science, 271 [5251] 933-37 (1996).   DOI
132 L. H. Qu and X. G. Peng, "Control of Photoluminescence Properties of CdSe Nanocrystals in Growth," J. Am. Chem. Soc., 124 [9] 2049-55 (2002).   DOI
133 C. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and Characterization of Nearly Monodisperse CdE (E=Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites," J. Am. Chem. Soc., 115 [19] 8706-15 (1993).   DOI
134 P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, and S. Tamang, "Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials," Chem. Rev., 116 [18] 10731-819 (2016).   DOI