DOI QR코드

DOI QR Code

Analysis of In/Ga Inter-Diffusion Effect on the Thermodynamical Properties of InAs Quantum Dot

  • Abdellatif, M.H. (Nano Convergence Devices Center, Korea Institute of Science and Technology) ;
  • Song, Jin Dong (Nano Convergence Devices Center, Korea Institute of Science and Technology) ;
  • Lee, Donghan (Chungnam National University) ;
  • Jang, Yudong (Chungnam National University)
  • Received : 2016.11.01
  • Accepted : 2016.11.19
  • Published : 2016.11.30

Abstract

Debye temperature is an important thermodynamical factor in quantum dots (QDs); it can be used to determine the degree of homogeneity of a QD structure as well as to study the interdiffusion mechanism during growth. Direct estimation of the Debye temperature can be obtained using the Varshni relation. The Varshni relation is an empirical formula that can interpret the change of emission energy with temperature as a result of phonon interaction. On the other hand, phonons energy can be calculated using the Fan Expression. The Fan expression and Varshni relation are considered equivalent at a temperature higher than Debye temperature for InAs quantum dot. We investigated InAs quantum dot optically, the photoluminescence spectra and peak position dependency on temperature has been discussed. We applied a mathematical treatment using Fan expression, and the Varshni relation to obtain the Debye temperature and the phonon energy for InAs quantum dots sample. Debye temperature increase about double compared to bulk crystal. We concluded that the In/Ga interdiffusion during growth played a major role in altering the quantum dot thermodynamical parameters.

Keywords

References

  1. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985). https://doi.org/10.1063/1.96342
  2. S. Guha, A. Madhukar, and K. C. Rajkumar., Appl. Phys. Lett. 57, 2100 (1990).
  3. C. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Phys. Rev. Lett. 66, 23 (1991).
  4. D. Leonard M. Krishnamurthy, C. M. Reavs, S. P. Denbaars, and P. M. Petroff Appl. Phys. Lett. 63, 23, (1993).
  5. R. Notzel, Jiro Temmyo, Toshiaki Tamamura, Nature 369, 131 (1994). https://doi.org/10.1038/369131a0
  6. J. Oshinowo, Masao Nishioka, Satomi Ishida, and Yasuhiko Arakawa, Jpn. J. Appl. Phys. 33, 1634 (1994). https://doi.org/10.1143/JJAP.33.1634
  7. G. Bacher, H. Schweizer, J. Kovac, and A. Forchel, Phys. Rev. B 43, 9312 (1991). https://doi.org/10.1103/PhysRevB.43.9312
  8. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., Phys. Rev. Lett. 76, 952 (1996). https://doi.org/10.1103/PhysRevLett.76.952
  9. R. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 78, 1207 (2001). https://doi.org/10.1063/1.1350596
  10. H. L. Wang, D. Ning, H. J. Zhu, F. Chen, H. Wang, X.D. Wang, and S. L. Feng, J. Crystal Growth 208, 107 (2000). https://doi.org/10.1016/S0022-0248(99)00441-8
  11. Y. P. Varshni, Physica, Amsterdam 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  12. N. M. Ravindra and V. K. Srivastava, J. Phys. Chem. Solids 40, 791 (1979). https://doi.org/10.1016/0022-3697(79)90162-8
  13. I. A. Vaninshten, A. F. Zatsepin, and V. S. Kortov, Physics of the Solid State, 41, 6, (1999).
  14. H. Y. Fan, Phys. Rev. 82, 900 (1951). https://doi.org/10.1103/PhysRev.82.900
  15. T. Skettrup, Phys. Rev. B 18, 2622 (1978). https://doi.org/10.1103/PhysRevB.18.2622
  16. J. L. Casas-Espinola, T.V. Torchynska, G.P. Polupan, E. Velazquez-Lozada, Materials Science and Engineering B 165 (2009) 115-117. https://doi.org/10.1016/j.mseb.2009.01.006
  17. Charles Santori1,2,4, David Fattal1, Jelena Vuckovic1, Glenn S Solomon1, and Yoshihisa Yamamoto, New Journal of Physics, 6,89 (2004). https://doi.org/10.1088/1367-2630/6/1/089
  18. Dongzhi Hu, Claiborne CO McPheeters, Edward T Yu, and Daniel M Schaadt, Nanoscale Research Letters 6 83(2011). https://doi.org/10.1186/1556-276X-6-83
  19. Manjula Sharma, Milan K. Sanyal, Ian Farrer, David A. Ritchie, Arka B. Dey, Arpan Bhattacharyya, Oliver H. Seeck, Joanna Skiba Szymanska, Martin Felle, Anthony J. ennett, and Andrew J. Shields, Sci Rep.5, 15732 (2015). https://doi.org/10.1038/srep15732
  20. M.H Abdellatif, Jin Dong Song, Won Jun Choi, and Nam Ki Cho, Journal of nanoscience and nanotechnology, 12, 5774 (2012) https://doi.org/10.1166/jnn.2012.6280
  21. S. -K. Ha and J. D. Song, App. Sci. Converg. Technol, 24, 245 (2015). https://doi.org/10.5757/ASCT.2015.24.6.245