• Title/Summary/Keyword: Doping Process

Search Result 514, Processing Time 0.025 seconds

Ag and Cu Precipitation in Multi-Layer Chip Inductors Prepared with V2O5 Doped NiCuZn Ferrites (V2O5 도핑된 NiCuZn 페라이트로 제조된 칩인덕터에서의 Ag/cu 석출)

  • Je, Hae-June;Kim, Byung-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.503-508
    • /
    • 2003
  • The purpose of this study is to investigate the effect of $V_2$$O_{5}$ addition on the Ag and Cu precipitation in the NiCuZn ferrite layers of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2$$O_{5}$ -doped ferrite pastes. With increasing the $V_2$$O_{5}$ content and sintering temperature, Ag and Cu oxide coprecipitated more and more at the polished surface of ferrite layers during re-annealing at $840^{\circ}C$. It was thought that during the sintering process, V dissolved in the NiCuZn ferrite lattice and the Ag-Cu liquid phase of low melting point was formed in the ferrite layers due to the Cu segregation from the ferrite lattice and Ag diffusion from the internal electrode. During re-annealing at $840^{\circ}C$, the Ag-Cu liquid phase came out the polished surface of ferrite layers, and was decomposed into the isolated Ag particles and the Cu oxide phase during the cooling process.

Removal of Laser Damage in Electrode Formed by Plating in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거)

  • Jeong, Myeong Sang;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.370-375
    • /
    • 2016
  • In this paper, we investigated the electrical properties of crystalline silicon solar cell fabricated with Ni/Cu/Ag plating. The laser process was used to ablate silicon nitride layer as well as to form the selective emitter. Phosphoric acid layer was spin-coated to prevent damage caused by laser and formed selective emitter during laser process. As a result, the contact resistance was decreased by lower sheet resistance in electrode region. Low sheet resistance was obtained by increasing laser current, but efficiency and open circuit voltage were decreased by damage on the wafer surface. KOH treatment was used to remove the laser damage on the silicon surface prior to metalization of the front electrode by Ni/Cu/Ag plating. Ni and Cu were plated for each 4 minutes and 16 minutes and very thin layer of Ag with $1{\mu}m$ thickness was plated onto Ni/Cu electrode for 30 seconds to prevent oxidation of the electrode. The silicon solar cells with KOH treatment showed the 0.2% improved efficiency compared to those without treatment.

Analysis of n+ emitter properties using Dopant Pastes for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 Dopant Pastes의 n+ emitter 특성 분석)

  • Lee, Ji-Hun;Cho, Kyeong-Yeon;Choi, Jun-Young;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.15-16
    • /
    • 2007
  • The high efficiency and low cost solar cells in order to it applied a dopant pastes diffusion process. The dopant pastes diffusion process which it uses is easily applied in screen-printing solar cells output line. in this paper, it used the Ferro 99-038 phosphorus diffusion pastes source and it analyzed a sheet resistance and a uniformity degree. And it knew the quality of the sheet resistance which it follows in temperature and time condition. The temperature variable it let and it fixed the time in 7 minutes. It will be able to measure the sheet resistance of $40({\Omega}/sq),\;30({\Omega}/sq),\; 20({\Omega}/sq)$. also average uniformity of the sheet resistance was below 5%.

  • PDF

Optical Characterization on Undoped and Mg-doped GaN Implanted with Nd (Nd이 이온주입된 undoped와 Mg-doped GaN의 분광 특성 연구)

  • Song, Jong-Ho;Rhee, Seuk-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.624-629
    • /
    • 2006
  • The energy transfer process between GaN and Nd ions as well as Mg codoping effect were investigated in Nd-implanted GaN films. Photoluminescence (PL) and PL excitation spectroscopies were performed on $^4F_{3/2}{\rightarrow}^4I_{9/2}$ Nd ionic level transition. At least three below bandgap traps were identified in the energy transfer process. The number of one particular trap, which is assigned to be an isoelectronic Nd trap, is increased with the Mg-codoping. The emission efficiency with above gap excitation, which emulates the electrical excitation, is further increased in GaN:Mg,Nd.

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

RuO2-Doped TiO2 Nanotube Membranes Prepared via a Single-Step/Potential Shock Sequence

  • Yoo, Hyeonseok;Seong, Mijeong;Choi, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.271-275
    • /
    • 2019
  • Anodic $TiO_2$ nanotubes were simultaneously grown and doped with $RuO_2$ by single-step anodization in a negatively-charged $RuO_4{^-}$ precursor. Subsequently, a high positive voltage was imposed on the nanotubes in an $F^-$-based electrolyte (a process referred to as potential shock), which led to the formation of a through-hole $RuO_2$-doped $TiO_2$ nanotube membrane without significant loss of the $RuO_2$ catalyst. XPS results confirmed that the doped Ru metal was converted into $RuO_2$ as the potential shock voltage increased. Further increases in the potential shock voltage led to the formation of $RuO_x/Ru$ in the $TiO_2$ nanotubes. All of our results clearly showed that a through-hole catalyst-doped $TiO_2$ nanotube membrane can be produced by a sequence consisting of single-step anodization and the potential shock process.

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

Implant Anneal Process for Activating Ion Implanted Regions in SiC Epitaxial Layers

  • Saddow, S.E.;Kumer, V.;Isaacs-Smith, T.;Williams, J.;Hsieh, A.J.;Graves, M.;Wolan, J.T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • The mechanical strength of silicon carbide dose nor permit the use of diffusion as a means to achieve selective doping as required by most electronic devices. While epitaxial layers may be doped during growth, ion implantation is needed to define such regions as drain and source wells, junction isolation regions, and so on. Ion activation without an annealing cap results in serious crystal damage as these activation processes must be carried out at temperatures on the order of 1600$^{\circ}C$. Ion implanted silicon carbide that is annealed in either a vacuum or argon environment usually results in a surface morphology that is highly irregular due to the out diffusion of Si atoms. We have developed and report a successful process of using silicon overpressure, provided by silane in a CAD reactor during the anneal, to prevent the destruction of the silicon carbide surface, This process has proved to be robust and has resulted in ion activation at a annealing temperature of 1600$^{\circ}C$ without degradation of the crystal surface as determined by AFM and RBS. In addition XPS was used to look at the surface and near surface chemical states for annealing temperatures of up to 1700$^{\circ}C$. The surface and near surface regions to approximately 6 nm in depth was observed to contain no free silicon or other impurities thus indicating that the process developed results in an atomically clean SiC surface and near surface region within the detection limits of the instrument(${\pm}$1 at %).

  • PDF