Browse > Article
http://dx.doi.org/10.33961/jecst.2019.03111

RuO2-Doped TiO2 Nanotube Membranes Prepared via a Single-Step/Potential Shock Sequence  

Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Seong, Mijeong (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.3, 2019 , pp. 271-275 More about this Journal
Abstract
Anodic $TiO_2$ nanotubes were simultaneously grown and doped with $RuO_2$ by single-step anodization in a negatively-charged $RuO_4{^-}$ precursor. Subsequently, a high positive voltage was imposed on the nanotubes in an $F^-$-based electrolyte (a process referred to as potential shock), which led to the formation of a through-hole $RuO_2$-doped $TiO_2$ nanotube membrane without significant loss of the $RuO_2$ catalyst. XPS results confirmed that the doped Ru metal was converted into $RuO_2$ as the potential shock voltage increased. Further increases in the potential shock voltage led to the formation of $RuO_x/Ru$ in the $TiO_2$ nanotubes. All of our results clearly showed that a through-hole catalyst-doped $TiO_2$ nanotube membrane can be produced by a sequence consisting of single-step anodization and the potential shock process.
Keywords
$TiO_2$ Nanotubes; Membrane; Doping; Potential Shock; Single-Step Anodization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, and P. Schmuki, Nano Lett, 2007, 7(5), 1286-1289.   DOI
2 J.W. Ng, X.W. Zhang, T. Zhang, J.-H. Pan, J.-H. Alan Du, and D.D. Sun, J. Chem. Technol. Biot, 2010, 85(8), 1061-1066.   DOI
3 C.-J. Lin, W.-Y. Yu, Y.-T. Lu, and S.-H. Chien, Chem. Commun, 2008, 45, 6031-6033.
4 J.J. Gong, Y.K. Lai, and C.J. Lin, Electrochim. Acta, 2010, 55(16), 4776-4782.   DOI
5 S. Shin, K. Kim, and J. Choi, Electrochem. Commun, 2013, 36, 88-91.   DOI
6 Q.W. Chen, and D.S. Xu, J. Phys. Chem. C, 2009, 113(15), 6310-6314.   DOI
7 B.-X. Lei, J.-Y. Liao, R. Zhang, J. Wang, C.-Y. Su, and D.-B. Kuang, J. Phys. Chem. C, 2010, 114(35), 15228-15233.   DOI
8 S.E. Kim, J.H. Lim, S.C. Lee, S.-C. Nam, H.-G. Kang, and J. Choi, Electrochim. Acta, 2008, 53(14), 4846-4851.   DOI
9 B.G. Lee, S.-C. Nam, and J. Choi, Curr. Appl. Phys, 2012, 12(6), 1580-1585.   DOI
10 G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J.L. Tirado, and P. Knauth, Chem. Mater, 2008, 21(1), 63-67.   DOI
11 G. Liu, K. Wang, N. Hoivik, and H. Jakobsen, Sol. Energ. Mat. Sol. C, 2012, 98, 24-37.   DOI
12 H. Yoo, Y.-W. Choi, and J. Choi, ChemCatChem, 2015, 7(4), 643-647.   DOI
13 J. Wang, and Z. Lin, Chem. Mater, 2008, 20(4), 1257-1261.   DOI
14 K. Kant, and D. Losic, Phys. Status Solidi - R, 2009, 3(5), 139-141.   DOI
15 Y. Jo, I. Jung, I. Lee, J. Choi, and Y. Tak, Electrochem. Commun, 2010, 12(5), 616-619.   DOI
16 Y. Gim, M. Seong, Y.-W. Choi, and J. Choi, Electrochem. Commun, 2015, 52, 37-40.   DOI
17 S. Kim, H. Yoo, O. Rhee, and J. Choi, J. Phys. Chem. C, 2015, 119(37), 21497-21503.   DOI
18 H. Yoo, K. Oh, Y.-C. Nah, J. Choi, and K. Lee, Electrochem. Comm. 2018, on-line version, DOI: 10.1002/celc.201800981.   DOI
19 H. Yoo, K. Oh, G. Lee, and J. Choi, J. Electrochem. Soc. 2017, 164(2), H104-H111.   DOI
20 J.H. Lim, S.-Y. Hong, S.J. Kang, H.-J. Doh, J. Song, J.R. Choi, K.-H. Chung, and J. Choi, Electrochem. Commun. 2009, 11(11), 2141-2144.   DOI
21 Q.W. Chen, D.S. Xu, Z.Y. Wu, and Z.F. Liu, Nanotechnology, 2008, 19(36), 365708.   DOI