Browse > Article

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process  

Cho, Sung-Haeng (LCD R&D Center, Samsung Electronics Co., Ltd.)
Choi, Yong-Mo (LCD R&D Center, Samsung Electronics Co., Ltd.)
Kim, Hyung-Jun (LCD R&D Center, Samsung Electronics Co., Ltd.)
Jeong, Yu-Gwang (LCD R&D Center, Samsung Electronics Co., Ltd.)
Jeong, Chang-Oh (LCD R&D Center, Samsung Electronics Co., Ltd.)
Kim, Shi-Yul (LCD R&D Center, Samsung Electronics Co., Ltd.)
Publication Information
Abstract
A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit
Keywords
AMLCD; a-Si:H TFT; LTPS TFT; DPSS laser crystallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Jeon, K. Choo, W. –K. Kee, J. Song, and H. Kim, in SID Tech. Dig. (2004), p. 10
2 A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. A. Ono, T. Suzuki, K. Miyata, and H. Kawakami, IEEE. Trans. Electron Devices 36, 351 (1989)   DOI   ScienceOn
3 P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, Appl. Phys. Lett. 64, 1132 (1993)   DOI   ScienceOn
4 M. Hack, P. Mei, R. Lujan, and A. G. Lewis, J. Non-Cryst. Solids 164-166, 727 (1993)   DOI   ScienceOn
5 M. J. Powell, C. van Berkel, and A. R. Franklin, Phys. Rev. B 45, 4160 (1992)   DOI   ScienceOn
6 C. –D. Kim, and M. Matsumura, IEEE Trans. Electron Devices 43, 576 (1996)   DOI   ScienceOn
7 P. Mei, J. B. Boyce, M. Hack, R. Lujan, S. E. Ready, D. K. Fork, R. I. Johnson, and G. B. Anderson, J. Appl. Phys. 76, 3194 (1994)   DOI   ScienceOn
8 K. Shimizu, H. Hosoya, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys. 30, 3704 (1991)   DOI
9 K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K Hotta, IEEE Trans. Electron Devices 36, 2868 (1989)   DOI   ScienceOn
10 A. A. Orouji and M. J. Kumar, IEEE Trans. Device and Materials Reliability 6, 315 (2006)   DOI   ScienceOn
11 T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986)   DOI   ScienceOn
12 T. Kaitoh, T. Miyazawa, H. Miyake, T. Noda, T. Sakai, Y. Owaku, and Y. Saitoh, in SID Tech. Dig. (2008), p. 1066