• Title/Summary/Keyword: Doped Oxide

Search Result 1,022, Processing Time 0.024 seconds

Improving the dielectric reliability using boron doping on solution-processed aluminum oxide

  • Kim, Hyunwoo;Lee, Nayoung;Choi, Byoungdeog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.411.1-411.1
    • /
    • 2016
  • In this study, we examined the effects of boron doping on the dielectric reliability of solution processed aluminum oxide ($Al_2O_3$). When boron is doped in aluminum oxide, the hysteresis reliability is improved from 0.5 to 0.4 V in comparison with the undoped aluminum oxide. And the accumulation capacitance is increased when boron was doped, which implying the reduction of the thickness of dielectric film. The improved dielectric reliability of boron-doped aluminum oxide is originated from the small ionic radius of boron ion and the stronger bonding strength between boron and oxygen ions than that of between aluminum and oxygen ions. Strong boron-oxygen ion bonding in aluminum oxide results dielectric film denser and thinner. The leakage current of aluminum oxide also reduced when boron was doped in aluminum oxide.

  • PDF

A Theoretical and Experimental Investigation into Pair-induced Quenching in Bismuth Oxide-based Erbium-doped Fiber Amplifiers

  • Jung, Min-Wan;Shin, Jae-Hyun;Jhon, Young-Min;Lee, Ju-Han
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2010
  • The pair-induced quenching (PIQ) effect in a highly doped bismuth oxide-based erbium-doped fiber amplifier (EDFA) was theoretically and experimentally investigated. In the theoretical investigation, the bismuth oxide-based EDFA was modeled as a 6-level amplifier system that incorporated clustering-induced concentration quenching, cooperative up-conversion, pump excited state absorption (ESA), and signal ESA. The relative number of paired ions in a highly doped bismuth oxide EDF was estimated to be ~6.02%, determined by a comparison between the theoretical and the experimentally measured gain values. The impacts of the PIQ on the gain and the noise figure were also investigated.

White Light Generation from Single Gallium Oxide Nanoparticles co-doped with Rare-Earth Metals

  • Patil, Prashant;Park, Jinsung;Lee, Seung Yong;Park, Jong-Ku;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.296-300
    • /
    • 2014
  • The synthesis of pure and rare-earth doped gallium oxide (${\beta}-Ga_2O_3$) nanoparticles is reported. The synthesized nanoparticles are characterized with XRD, TEM, and PL analyses. Strong blue emission is observed from un-doped gallium oxide nanoparticles, while nanoparticles doped with $Eu^{3+}$ and $Tb^{3+}$ give strong red and green emissions, respectively. When doped with $Eu^{3+}$ and $Tb^{3+}$ together, gallium oxide nanoparticles emit white light. The CIE coordinate of the emitted light was found to be (0.33, 0.33), which is well within the white light region.

Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application

  • Kwak, Dong-Joo;Moon, Byung-Ho;Lee, Don-Kyu;Park, Cha-Soo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.684-687
    • /
    • 2011
  • In this study, we investigate the photovoltaic performance of transparent conductive indium tin oxide (ITO), titanium-doped indium oxide (ITiO), and fluorine-doped tin oxide (FTO) films. ITO and ITiO films are prepared by radio frequency magnetron sputtering on soda-lime glass substrate at $300^{\circ}C$, and the FTO film used is a commercial product. We measure the X-ray diffraction patterns, AFM micrographs, transmittance, sheet resistances after heat treatment, and transparent conductive characteristics of each film. The value of electrical resistivity and optical transmittance of the ITiO films was $4.15{\times}10^{-4}\;{\Omega}-cm$. The near-infrared ray transmittance of ITiO is the highest for wavelengths over 1,000 nm, which can increase dye sensitization compared to ITO and FTO. The photoconversion efficiency (${\eta}$) of the dye-sensitized solar cell (DSC) sample using ITiO was 5.64%, whereas it was 2.73% and 6.47% for DSC samples with ITO and FTO, respectively, both at 100 mW/$cm^2$ light intensity.

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Synthesis of Nitrogen-Doped Graphene by Thermal Annealing of Graphene Oxide with Melamine Compounds (멜라민 화합물을 이용한 산화 그래핀 도핑 및 특성 평가)

  • Kim, Sumin;Kim, Hyun;Kim, So Yang;Han, Jong Hun
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.677-683
    • /
    • 2019
  • In this paper, nitrogen-doped reduced graphene oxide(rGO) is obtained by thermal annealing of nitrogen-containing compounds and graphene oxide (GO) manufactured by modified Hummers' method. We use melamine as a nitrogen-containing compound and treat GO thermally with melamine at over $800{\sim}1,000^{\circ}C$ and 1 ~ 3 hr under Ar atmosphere. The electrical conductivity of doped rGO is measured by 4-point probe method. As a result, nitrogen contents on rGO are found to be in the range of 2.5 to 12.5 at% depending on the doping conditions after thermal annealing. The main doping site on graphene oxide is changed from pyridinic-N and pyrrolinic N to the graphitic site as the heat treatment temperature increases. The electrical conductivity of doped rGO increases as the N doping content increases. As the thermal treatment time increases, the change of both total doping contents and doping sites is slight and the surface resistance is remarkably reduced, which is caused by healing effects of doped graphene oxide at high temperature.

Study of the Feature of Antimony doped Tin Oxide Using Urea (우레아를 이용한 ATO(Antimony doped Tin Oxide)의 특성 연구)

  • Kim, Jin-Chul;Ahn, Yong-Kwan;Choi, Byung-Hyun;Lee, Mi-Jae;Back, Jong-Hoo;Sim, Kaung-Bo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.361-362
    • /
    • 2005
  • Antimony doped tin oxide(ATO) nano powders have been synthesized by homogeneous precipitation method using $SnCl_4\cdot5H_2O$ for precursor, $SbCl_3$ as doped material and urea. The hydrolysis of urea and conductive mechanism and Heat treatment was performed at the temperature from $500^{\circ}C$ to $700^{\circ}C$ in air. The ATO nano powders are characterized by means of Thermogravimetry differential thermal analyzer (TG-DTA), X-ray diffraction (XRD), Brunauer, Emmett, and Teller adsorption (BET), Scanning electron microscopy (SEM) ATO nano powders with an average size of nm and the highest surface area 129 $m^2g^{-1}$ are obtained.

  • PDF

Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals (플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향)

  • Janghan Na;Sungbin Kim;Sungyeon Heo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.

PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES. (얇은막 산화철 광반도성 전극의 제조와 그 특성)

  • Kim, Il-Kwang;Kim, Yon-Geun;Park, Tae-Young;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan;Koo, Chang-Young;Ma, Hong-Chan;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.241-244
    • /
    • 2012
  • Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.