DOI QR코드

DOI QR Code

White Light Generation from Single Gallium Oxide Nanoparticles co-doped with Rare-Earth Metals

  • Patil, Prashant (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Park, Jinsung (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Seung Yong (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Park, Jong-Ku (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Cho, So-Hye (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST))
  • Received : 2014.08.25
  • Accepted : 2014.09.24
  • Published : 2014.09.30

Abstract

The synthesis of pure and rare-earth doped gallium oxide (${\beta}-Ga_2O_3$) nanoparticles is reported. The synthesized nanoparticles are characterized with XRD, TEM, and PL analyses. Strong blue emission is observed from un-doped gallium oxide nanoparticles, while nanoparticles doped with $Eu^{3+}$ and $Tb^{3+}$ give strong red and green emissions, respectively. When doped with $Eu^{3+}$ and $Tb^{3+}$ together, gallium oxide nanoparticles emit white light. The CIE coordinate of the emitted light was found to be (0.33, 0.33), which is well within the white light region.

Keywords

References

  1. L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998). https://doi.org/10.1016/S0022-3697(98)00047-X
  2. M. Zinkevich and F. Aldinger, J. Am. Ceram. Soc. 87, 683 (2004). https://doi.org/10.1111/j.1551-2916.2004.00683.x
  3. X. Wang, Q. Xu, F. T. Fan, X. L. Wang, M. R. Li, Z. C. Feng, and C. Li, Chem. Asian. J. 8, 2189 (2013). https://doi.org/10.1002/asia.201300433
  4. G. Sinha and A. Patra, Chem. Phys. Lett. 473, 151 (2009). https://doi.org/10.1016/j.cplett.2009.03.074
  5. W. Lueangchaichaweng, N. R. Brooks, S. Fiorilli, E. Gobechiya, K. F. Lin, L. Li, S. Parres-Esclapez, E. Javon, S. Bals, G. Van Tendeloo, J. A. Martens, C. E. A. Kirschhock, P. A. Jacobs, and P. P. Pescarmona, Angew. Chem. Int. Edit. 53, 1585 (2014). https://doi.org/10.1002/anie.201308384
  6. K. Shimizu, M. Takamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshida, and T. Hattori, J. Phys. Chem. B 103, 1542 (1999). https://doi.org/10.1021/jp983790w
  7. G. B. Palmer and K. R. Poeppelmeier, Solid. State. Sci. 4, 317 (2002). https://doi.org/10.1016/S1293-2558(01)01258-4
  8. C. Baban, Y. Toyoda, and M. Ogita, J. Optoelectron. Adv. M. 7, 891 (2005).
  9. M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, J. Appl. Phys. 77, 686 (1995). https://doi.org/10.1063/1.359055
  10. T. Chen and K. B. Tang, Appl. Phys. Lett. 90, (2007).
  11. T. Wang and P. V. Radovanovic, J. Phys. Chem. C. 115, 18473 (2011). https://doi.org/10.1021/jp205502d
  12. T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, J. Am. Chem. Soc. 132, 9250 (2010). https://doi.org/10.1021/ja101333h
  13. M. Ristic, S. Popovic, and S. Music, Mater. Lett. 59, 1227 (2005). https://doi.org/10.1016/j.matlet.2004.11.055
  14. S. Hamada, K. Bando, and Y. Kudo, B Chem. Soc. Jpn. 59, 2063 (1986). https://doi.org/10.1246/bcsj.59.2063
  15. S. Avivi, Y. Mastai, G. Hodes, and A. Gedanken, J. Am. Chem. Soc. 121, 4196 (1999). https://doi.org/10.1021/ja9835584
  16. Y. Y. Zhao, R. L. Frost, J. Yang, and W. N. Martens, J. Phys. Chem. C 112, 3568 (2008).
  17. T. Xiao, A. H. Kitai, G. Liu, and A. Nakua, J. Barbier, Appl. Phys. Lett. 72, 3356 (1998). https://doi.org/10.1063/1.121602
  18. T. Minami, T. Shirai, T. Nakatani, and T. Miyata, Jpn. J. Appl. Phys. 239, L524 (2000).
  19. J. S. Kim, H. E. Kim, H. L. Park, and G. C. Kim, Solid. State. Commun. 132, 459 (2004). https://doi.org/10.1016/j.ssc.2004.08.023

Cited by

  1. Gallium oxide nanospheres: Effect of the post-annealing treatment vol.194, 2017, https://doi.org/10.1016/j.matlet.2017.02.021