• Title/Summary/Keyword: Divergence Critical Load

Search Result 13, Processing Time 0.024 seconds

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Dynamic Stability Analysis of Tapered Beck Columns (변단면 Beck 기둥의 동적안정 해석)

  • Lee Byoung-Koo;Lee Tae-Eun;Kang Hee-Jong;Kim Gwon-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of tapered columns with clamped one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck columns is derived using the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter, mass ratio and spring stiffness.

  • PDF

Stability of Stepped Columns Subjected to Nonconservative Force (비보존력이 작용하는 불연속 변단면 기둥의 안정성)

  • Oh, Sang-Jin;Mo, Jeong-Man;Lee, Jae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of stepped cantilever columns with a tip mass of rotatory inertia and a translational spring at one end. The column model is based on the Bernoulli-Euler theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibration of columns with stepwise variable cross-section and subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. The frequency and critical divergence/flutter load for the stepped column with a single step are presented as functions of various non-dimensional system parameters: the segmental length parameter, the section ratio, the subtangential parameter, the mass, the moment of inertia of the mass, and the spring parameter.

  • PDF

Critical Loads of Tapered Cantilever Columns with a Tip Mass (자유단 집중질량을 갖는 변단면 캔틸레버 기둥의 임계하중)

  • Jeong, Jin Seob;Lee, Byoung Koo;Kim, Gwon Sik;Kim, Jong Ung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.699-705
    • /
    • 2005
  • This paper investigates critical loads of tapered cantilever columns with a tip mass, subjected to a follower force. The linearly tapered solid rectangular cross-sections are adopted as the column taper. The differential equation governing free vibrations of such columns, also called Beck's columns, is derived using the Bernoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters, namely, the taper type, the subtangential parameter, and the mass ratio.

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

Stability of Cantilever-Type Columns under Nonconservative Load (비보존력이 작용하는 캔틸레버형 기둥의 안정성)

  • 오상진;이병구;최규문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.244-251
    • /
    • 2002
  • The purpose of this paper is to investigate the stability of tapered columns with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The column model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered columns subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. After having verified the results of the present study, the frequency and critical divergence/flutter load are presented as functions of various nondimensional system parameters.

  • PDF

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

Nonlinear vibration of laminated composite plates subjected to subsonic flow and external loads

  • Norouzi, Hamed;Younesian, Davood
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1261-1280
    • /
    • 2016
  • We study chaotic motion in a nonlinear laminated composite plate under subsonic fluid flow and a simultaneous external load in this paper. We derive equations of motion of the plate using the von-$K{\acute{a}}rm{\acute{a}}n^{\prime}s$ hypothesis and the Hamilton's principle. Galerkin's approach is adopted as the solution method. We then conduct a divergence analysis to obtain critical velocities of the transient flow. Melnikov's integral approach is used to find the critical parameters in which chaos takes place. Effects of different parameters including the aspect ratio, plate material and the ply angle in laminates on the critical flow speed are investigated. In a parametric study, we show that how the linear and nonlinear stiffness of the plate and the load frequency and amplitude would influence the chaotic behavior of the plate.