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Stability Analysis of Beck's Column with a Tip Mass
Restrained by a Spring
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AA %), Flutter Frequency($L8721%<), Follower Force(Z2%4),
(#4535 8), Subtangential Follower Force(AAIE %)

ABSTRACT

The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns
with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations
of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory.
Both the divergence and flutter critical loads are calculated from the load-frequency curves that are
obtained by solving the differential equation numerically, The critical loads are presented in the
figures as functions of various non-dimensional system parameters such as the subtangential
parameter, mass ratio and spring parameter.
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Since columns are one of the most important
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structural units as well as the beams and plates,
free vibrations and stabilities of the columns have
been studied by many researchers. In those
studies, columns are modeled as the continuous or
discrete systems, in which the subjected loads are
considered as a conservative or non-conservative
forces as shown in Fig. 1(a), (b) and (¢).*?

The unreality on structures subjected to the
follower forces as a non-conservative force, ie.
Beck's columns had been discussed and argued.(B)

However, the load directions can be changed
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systematically due to the advanced control
techniques recently and the structures subjected to
a follower force can be realistic in the modern
engineering fields, From this viewpoint, stability
problems of the structures that carry the non-
conservative loads such as Beck's columns become
to be very important in various engineering
fields.” _

Since Beck™ had calculated critical loads of the
cantilever columns subjected {o a tangential
follower force in 1952, both- free vibrations and
stabilities of the cantilever columns subjected o a
non-conservative force have been investigated by
many researchers. In 1976, Kounadis and
Katsikadelis® had investigated the effects of the
shear deformation and rotatory inertia on the
behavior of Beck's column, and Sankaran and
Rao'” had calculated flutter critical loads of the
tapered cantilever columns. In 1977, Pedersen'®
had researched stabilities of the uniform cantilever
columns restrained by an elastic spring at free
end, carrying a tip mass and a subtangential
follower force as shown in Fig. 1(b). In 1984,
Yoon and Kim® had studied the effect of the
inertia moment of tip mass on the stability of
Beck’s column. In 1985, Yoon and Kim"” had
investigated the stability of Beck's columns with a
spring at the clamped end. In 1992, Chen and

Ku'™ had proposed the finite element model for

P

Fig.1 Columns subjected to (a) conservative
and (b). (c) non-conservative forces

calculating the natural frequencies and critical
loads of . Beck's columns carrying a tip mass. In
1994, Kuo and Yang"™® had calculated critical
loads of the undamped non-conservative structural
systems. In 1996, Sato™ had studied instabilities
of the cantilever Timoshenko columns with a tip
mass, carrying a follower force. In 1997, Yoon et
W had studied the stability of Beck’s columns
restrained by a spring at the free end, Also in
1997, Ryu et 2™ had investigated dynamic

al'

stabilities of the cantilever columns restrained by
spring
subtangential follower force. In 1999, Langthjem
and Sugivama"® had obtained optimal shapes for

the intermediate elastic carrying a

the dynamic stabilities of cantilever columns
subjected to a follower force. In 2002, Andersen
and Thomsen™ had
behavior of Beck’s column with a tip mass. .In
2003, Dentiko™ had investigated the lumped
damping and stability of Beck's column with a tip
mass. And in 2004, Rao and Rao"™ had studied

behaviour of FEuler and Beck

studied the post-critical

the post-critical
columns resting on an elastic foundation.

It is well known that structures subjected to a
conservative force always have the divergence
critical loads. However, structures subjected to a
non- conservative force have the divergence or
flutter critical forces according to the geometry of
structure, boundary conditions and characteristics
of non-conservative force. For analysing stabilities
of such structures, it is nol possible to adopt the
static concept but possible to adopt the dynamic
concept which includes rotatory inertia effect in
the theory.

This study deals with natural frequencies and
critical loads of Beck's columns with an elastic
spring at free end, which carry a tip mass and

a subtangential follower force. The ordinary
differential equation accompanying with the
boundary conditions which governs the free

vibrations of such Beck’s columns is derived and

solved numerically, From the load versus
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frequency curves, the divergence and flutter
critical loads are calculated. The effects of the
column geometry on natural

investigated.

frequencies are

2. Mathematical Model

2.1 Governing Differential Equation

As shown in Fig. 2, the dashed line depicts
Beck's column with span length /7, which is
elastically restrained by a tip spring. The tip mass
is attached at free end. For a while the solid line
depicts a typical mode shape of Beck’s column
subjected to a follower force P.

The magnitude of mass is depicted as M whose
moment of inertia of mass is J. The spring
constant is expressed as K. The angle « is the
rotation at free end which is obtained from the
analysis result but not an input value. The 7
ranging 0 =<y=<1 is the subtangential parameter
which presents the inclined rate of the follower
force P from the axis x. It is noted that the
P with =0 1is the
well-known Euler's column, P with 0¢¥{1 is a

column subjected to

subtangential follower force and P with y=1 is a

follower force. The w(x,f) is the dynamic
x P
A ya,l i
e, .

!
l

YRahid

w(x, )

Fig. 2 Typical mode shape and its variables

displacement and ¢ is time.

The partial differential equation governing free
vibration of the uniform column subjected to an
axial compressive load P is given in Eq. (1), in
which the effects of rotatory inertia and shear
deformation in the theory are excluded.

3 fwlx, D) 0 twlx, D 3 2wx, ) _
Erl axt +P 95 2 + pA Y 0
(1)

where EI
density of the column material.

is flexural rigidity and p is mass

It is assumed that free vibration of the column

is a harmonic motion and then its dynamic
displacement is presented as follows.
wix, )= w sin(w (2)

where w, is amplitude of the harmonic motion,
which is function of only x, and w; is angular
frequency and : is mode number,

In order to derive the governing equation as a

non-dimensional  form, the following non-

dimensional variables are introduced,
E=x/l (3)
1=w,/l ey
p=PI*/(ED) (5)
=M/ (pA) (6)
i=J/(eAl®) (7)
k=KI*/(ED (8)
C,=w Il pA/(EI) (9)

where Eqgs. (3) and (4) are non-dimensional
(& » in which the
(x, w,) are nomalized by span length 7 and » is

coordinates coordinates

the load parameter. Also, # and ; are the mass
rate and non-dimensional moment of inertia of
mass, respectively, and £ is spring parameter and
C; is frequency parameter,

Substitution of Eq. (2) into Eq. (1), using Egs.

(3)~(9), vyields the non-dimensional ordinary
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differential equation as follows.

4
%E?Z Zsﬁcz (10)

2.2 Boundary Condition
At clamped end, the amplitude ( w,) is zero,

Le mathematically
rotation ( dw,/dx)

two equations can be

w,=0 and the angular of
dw ./dx=0. These

transformed as the

is zero, ie.

non-dimensional forms as follows,

7=0at £=0 (11)
dan _
dE 0at £&=0 (12)

At free end, the mass M accompanying with
moment of inertia of mass [ is attached and the
follower force P with subtangential parameter 7y
is carried. The free end is restrained by an elastic
spring whose spring constant is K. Therefor, the
bending moment and shear force loaded at free
end are presented as follows.

2
EI ddx";* = wlf d;x* (13)
ds d
EI dx”ﬁx =—P— )7 +(K~ oM,
(14)

Above two equations can be transformed by
using Egs. (3) ~(9) as follows.

d®p

7 O —0at =1 (15)

Zéahﬁ(l— DL+ (uCl= =0 at £=1
(16)

2.3 Numerical Method

It is possible to obtain the frequency parameter
C; and mode shape #(& when the ordinary
differential Eq. (10) accompanying with the
equations of boundary condition (11), (12), (15)
and (16) s

numerical methods. The Runge-Kutta method was

solved by using the adequate

used for integrating the differential equation and

1290/8t= 4

the Determinant Search Method combined with
the Regula-Falsi method was used for obtaining
the eigenvalue C, in the differential Eq. (10).*”

~ Note that the mode shape 7(& is obtained from

the results of numerical integration.

The. lowest two C;(i=1, 2) are calculated in
this -study, from which the load versus frequency
curves by load steps can be obtained. The typical
load versus frequency curves are shown in Fig. 3.

Firstly, the divergence critical load of Euler's

column is explained, As shown in Fig. 3, C; is
decreased as p increases and finally, C,(i=1)

is the
divergence critical load parameter depicted as p,

reaches zero at p marked [J which

The column buckles under the load p, The
Euler's column subjected p with y=0 shown in
Fig. 1(a) has always p,

load of Beck’s
column is explained. Other two curves in Fig. 3,
solid( 7=1) and dashed( i=2) ones, mest at »
marked W for being C,= C, The load p» which

becomes to be C,=C, as mentioned above is

Secondly, the flutter critical

the flutter critical load parameter depicted as p;
and its corresponding frequency parameter at p, is

the flutter frequency parameter defined as
CA=C,=C,). This kind of column is so called

Solid line: first mode(i=1)
. Dashed line: second mode(i=2)
=
5 — :is: -
8] BRI
o o4 — ~ \\\
L ~
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- \
% (p:.Cy)
2 i
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[
b
{p«. 0)
O T | T | T N T u | T | T f T
0 1 2 3 4 5 [ 5

Load parameter, p

Fig.3 Typical example of p versus C, curves
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as the Beck's column. The column under the load
p; becomes to be flutter and becomes to be
instable since two mode shapes of C, and C,
other perfectly. The columns
subjected to p with y=1,
follower force, shown in Fig. 1(c) have always p,

are same each
namely tangential

For a while, the columns under the load p with
0¢ <1, namely subtangential follower force, shown
in Fig. 1(b) have the divergence or flutter critical
loads depending on the value of 7.

The load versus frequency curves are obtained
by using numerical methods mentioned above and
then from these curves, p, or p, is calculated. In
processing of the numerical methods, it is not
possible to obtain the values of exact p, or p, so
that p, or p,is calculated under the tolerances of
C\<1x10 7% or C,—C,<1x10 75 respectively.
And here, C; flutter
frequency parameter C;= (C;+ Cy)/2.

is determined as the

When the spring parameter 4 subtangential

parameter 7, mass ratio # and non-dimensional
moment of inertia of mass j are given, two
FORTRAN programs

which can calculate lowest two C; and the lowest

computer were  written

ps or p, with the corresponding C .

3. Numerical Examples and Discussion

In order to verify the numerical results of this
(13)

study, values of p, of this study and reference
are compared in Table 1. From this table, the
theories and numerical methods developed herein

are validated.

Table 1 Comparison between this study and

reference
Geometry of column T}iiuzzrd;ritma;:;:imi{m
=0 mis | 1 1419
u;lig: f;ofo 6.766 6.767

Figure 4 shows the load-frequency curves for
which #=0.5, j=0.1, #=5 and y=02, 031,
0.33 and 0.8. In both cases of y=02 and 031, C;
are decreased as p increases and finally, C,
C,=0, at p» marked [ Such

load p are the divergence critical load parameters
p4=885 for y=02 and p,=124 for »=031.

When the column is subjected to p,=885 with

reach zero, ie.

y=02 or p,=124 with =031, the column

buckles statically, For the columns with 7=0.33
and 0.8, the columns have p,=155 and 7.27,
marked BB, corresponding with C,=1.61 and 4.09,
respectively, The columns become to be instable
dynamically soon when the columns are subjected
to the load », Therefor, it is very important to
calculate p, and p, for analysing the stability of
Beck's columns. Note that the critical loads are
transformed from the divergence to flutter one in
the range of 0.31¢ ¥¢0.33.

The mode shapes of the columns for which
u=0.5, j=0.1 and £=5 are shown in Fig.
5(a) and (b). The column in Fig. 5(a) has the
divergence critical load p, as shown in Fig. 4

‘and the first and second mode shapes have not

the nodal points because of the coupling effects of
tip spring and subtangential follower force. In

u=0.5, j=0.1, k=5
Solid line: first mode(i=1)
Dashed line: second mode(i=2)

N x
(7.27.4.09) s

N
N

AN
¥=0.33 \\

A
b

J (155.1.61)

(12.4.0
0 — T T T =7 T T T T
16 20

Frequency parameter, C;
|

8 12
Load parameter. p

Fig. 4 p versus C; curves

SRASNESSHE=EE/A 158 A 11 3, 20059/1291



Byoung-Koo Lee, Guangfan Li, Sang-Jin Oh and Gwon-Sik Kim

general case, the second mode has one nodal point.
The column in Fig.5(b) has the flutter critical
load #, and also, both mode shapes have not the

nodal points. Nevertheless the free end is
restrained by an elastic spring, the maximum
amplitudes are arose in the free end. For

interested reader’s reference, values of C, and
C, are presented in this figure.

The relationships between the subtangential
parameter 7 and critical loads p, and p, for the

column with #=05 /=01 and %=0/5/10 are
shown in Fig. 6. It is noted that critical loads are

u=0.5, j=0.1, k=5

¥=0.2, p=5 =08, p=14
’ 1
‘ C59.5,7
I 7
7 — ’
/ ,
1 I
i 08 — /
’ ¢
! ]
/c=5.78 1 [ci=21.1
t
’/ 06 —|!
I U
! I
I M -
!
i
? 04 —
X
r
1 —
!
4 0.2 —f
7 7

(a) (b)
Fig. 5 Mode shapes

24

| u=05,j=0.1

(0.220,18.1)

(0.321,15.8)

(0.500.13.3)

Critical load parameter, ps and py

0 0.2 04 06 08 i
Subtangential parameter, y

Fig. 6 7y versus p, and p, curves

transformed from p, to p, at each value of 7

marked by @. For example, the column with £
=5 have the divergence critical loads p  with 7

value less than 0.321 and the flutter critical loads

p, with y value .greater than 0321. As 7
increases, p, is increased and p, is decreased.
with 7 value less than 0.321 and the flutter

critical loads p, with 7y value greater than 0.321.
As 7

decreased.

increases, p, is increased and p, is

Figure 7 shows the mass ratio « versus flutter
critical load parameter p, curves for the column

3
7=0.5, k=5
7 p=16.2 foru=0

Flutter critical load parameter, py
| ]

e 1

~

0 0.2 04 . 06 08 1
) Mass ratio, u

Fig. 7 u versus p, curves

| u=05, j=0.1

pr for y=0.5

pq for y=0.2

Critical load parameter, pg and ps

2 T T T T T T T T T
0 2 . 4 [ 8 10
Spring parameter, k

Fig.8 k& versus p, and p, curves
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with y=05 and £=5. It is noted that p,is 16.2
for «=0, namely without the tip mass, as shown
in the legend of Fig. 7. It means that the flutter
critical load 2, is suddenly decreased from p,

=16.2 to each value of p, marked by O due to
the tip mass and its moment of inertia. As u
increases, p, is increased for j=01. For ;=03
and 05, p, decreases, reaches lowest point and

increases again.
Figure 8 shows the relationships between spring

parameter % and critical loads p, », for which
#=05 and j=01 As % increases, p, for 7
=0.2 is increased but p, for =05 is decreased.

Two critical loads curves are almost linear buf not
perfect linear,

4. Concluding Remarks

This
column

paper deals with stabilities of Beck's
with a tip mass, subjected to a
subtangential force.  The
differential equation with boundary conditions of
Beck's column was derived and solved numerically

follower ordinary

for calculating natural frequencies and its
corresponding mode shapes. Both the divergence
and flutter critical loads were calculated by using
the load versus frequency curves obtained herein.
As the numerical results, effects of subtangential
parameter, mass ratio and spring parameter on
natural frequencies, mode shapes and both the
divergence and flutter critical loads are presented
and discussed extensively, It is expected that
resulfs obtained herein should be utilized for the
static and dynamic stabilities of the structures
subjected to a subtangential follower force such as

Beck’s columns,
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