• Title/Summary/Keyword: Distribution of Resources

Search Result 4,478, Processing Time 0.033 seconds

Flood Risk Estimation Using Regional Regression Analysis (지역회귀분석을 이용한 홍수피해위험도 산정)

  • Jang, Ock-Jae;Kim, Young-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2009
  • Although desire for living without hazardous damages grows these days, threats from natural disasters which we are currently exposed to are quiet different from what we have experienced. To cope with this changing situation, it is necessary to assess the characteristics of the natural disasters. Therefore, the main purpose of this research is to suggest a methodology to estimate the potential property loss and assess the flood risk using a regional regression analysis. Since the flood damage mainly consists of loss of lives and property damages, it is reasonable to express the results of a flood risk assessment with the loss of lives and the property damages that are vulnerable to flood. The regional regression analysis has been commonly used to find relationships between regional characteristics of a watershed and parameters of rainfall-runoff models or probability distribution models. In our research, however, this model is applied to estimate the potential flood damage as follows; 1) a nonlinear model between the flood damage and the hourly rainfall is found in gauged regions which have sufficient damage and rainfall data, and 2) a regression model is developed from the relationship between the coefficients of the nonlinear models and socio-economic indicators in the gauged regions. This method enables us to quantitatively analyze the impact of the regional indicators on the flood damage and to estimate the damage through the application of the regional regression model to ungauged regions which do not have sufficient data. Moreover the flood risk map is developed by Flood Vulnerability Index (FVI) which is equal to the ratio of the estimated flood damage to the total regional property. Comparing the results of this research with Potential Flood Damage (PFD) reported in the Long-term Korea National Water Resources Plan, the exports' mistaken opinions could affect the weighting procedure of PFD, but the proposed approach based on the regional regression would overcome the drawback of PFD. It was found that FVI is highly correlated with the past damage, while PFD does not reflect the regional vulnerabilities.

Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River(Nakdong) (낙동강 8개 보에서 기상수문·기초수질 및 우점조류의 시공간 종적 변동성)

  • Shin, Jae-Ki;Park, Yongeun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.268-286
    • /
    • 2018
  • The eutrophication and algal blooms by harmful cyanobacteria (CyanoHAs) and freshwater redtide (FRT) that severely experiencing in typical regulated weir system of the Nakdong River are one of the most rapidly expanding water quality problems in Korea and worldwide. To compare with the factors of rainfall, hydrology, and dominant algae, this study explored spatiotemporal variability of the major water environmental factors by weekly intervals in eight weir pools of the Nakdong River from January 2013 to July 2017. There was a distinct difference in rainfall distribution between upstream and downstream regions. Outflow discharge using small-scale hydropower generation, overflow and fish-ways accounted for 37.4%, 60.1% and 2.5%, respectively. Excluding the flood season, the outflow was mainly due to the hydropower release through year-round. These have been associated with the drawdown of water level, water exchange rate, and the significant impact on change of dominant algae. The mean concentration (maximum value) of chlorophyll-a was $17.6mg\;m^{-3}$ ($98.2mg\;m^{-3}$) in the SAJ~GAJ and $29.6mg\;m^{-3}$ ($193.6mg\;m^{-3}$) in the DAS~HAA weir pools reaches, respectively. It has increased significantly in the downstream part where the influence of treated wastewater effluents (TWEs) is high. Indeed, very high values (>50 or $>100mg\;m^{-3}$) of chlorophyll-a concentration were observed at low flow rates and water levels. Algal assemblages that caused the blooms of CyanoHAs and FRT were the cyanobacteria Microcystis and the diatom Stephanodiscus populations, respectively. In conclusion, appropriate hydrological management practices in terms of each weir pool may need to be developed.

Characteristics of Heavy Minerals in the South East Yellow Sea Mud (SEYSM) and South West Cheju Island Mud (SWCIM) (황해남동니질대와 제주남서니질대 표층퇴적물의 중광물 특성 비교 연구)

  • Koo, Hyo Jin;Cho, Hyen Goo;Lee, Bu Yeong;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.93-102
    • /
    • 2017
  • Heavy mineral provide an important information for sediment provenance as well as a potential submarine mineral resources. We compared the heavy mineral characteristics between Southeastern Yellow Sea Mud (SEYSM) and Southwestern Cheju Island Mud (SWCIM) surface sediments. We separated heavy minerals from 28 surface sediments in each mudbelt, and then carried out stereo-microscopic, field-emission scanning electron microscopic, energy dispersive spectroscopic and electron probe microanalysis to characterize the type, abundance, mineralogical properties and distribution pattern of heavy mineral. Amphibole and epidote, which are two major heavy minerals, account for more than 70% of total heavy minerals. Zircon and sphene contents are more abundant in SEYSM, whereas apatite and rutile contents are more abundant in SWCIM. Monazite only occurs in some area of SEYSM. Sphene and monazite content decrease to the south in SEYSM. Both garnet-zircon index (GZi) and rutile-zircon index (RuZi) are low in SEYSM but high in SWCIM. Amphiboles in SEYSM primarily correspond to hornblende, however those in SWCIM represent variable composition from pargasite, tshermakite, hornblende to tremolite. Garnets in SEYSM have high Mg and low Ca, but those in SWCIM have low Mg with variable Ca. Different heavy mineral characteristics between SEYSM and SWCIM suggests that sediments in each mudbelt have different provenances. Although this study implies that SEYSM sediment may mostly come from nearby Korean western rivers such as the Keum and Han rivers, this study does not suggest any idea of the source area of SWCIM sediment. Further study is needed to interpret the provenance and transportation mechanism of mudbelt sediments through the heavy mineral research for the river sediments flowing into the Yellow Sea and much more marine sediments.

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon

  • Park, Kyeong-Hun;Yun, Hye-Jeong;Kim, Won-Il;Kang, Jun-Won;Millner, Patricia D.;Micallef, Shirley A.;Kim, Byeong-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.615-622
    • /
    • 2013
  • The purpose of this study was to evaluate microbial contamination of melons in Korea. A total of 123 samples including melon fruits, leaves, seeds, soils, and irrigation water were collected from farms and markets to detect total aerobic bacteria, coliform, Escherichia coli, and pathogenic bacteria such as Bacillus cereus, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Samples were collected from Iksan and Nonsan farms to monitor bacterial levels on pre-market melons. The total aerobic and coliform bacteria on melon cultivation were between 0.43 and 6.65 log CFU $g^{-1}$, and 0.67 and 2.91 log CFU $g^{-1}$, respectively. Bacillus cereus, a fecal coliform, was detected in soils and melon leaves from Iksan farm at 2.95, 0.73 log CFU $g^{-1}$, respectively, and in soils from Nonsan farm at 3.16 log CFU $g^{-1}$. Market melon samples were collected to assay bacterial load on melon being sold to consumers. The contamination levels of total aerobic bacteria in agricultural markets, big-box retailers, and traditional markets were 4.82, 3.94, 3.99 log CFU $g^{-1}$, respectively. The numbers of coliform in melon on the markets ranged from 0.09 to 0.49 log CFU $g^{-1}$. Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus were not detected in any samples. The count of total aerobic bacteria on melon seeds ranged from 0.33 to 3.34 log CFU $g^{-1}$. This study found that irrigation water, soil, manure and various farm work activities including post-harvest processes were latent sources of microbial contamination. These results suggest that hygienic management and monitoring of soil, water, and agricultural material should be performed to reduce microbial contamination in melon production.

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea (남해 가막만의 현생퇴적층 발달특성)

  • Kim, So Ra;Lee, Gwang Soo;Choi, Dong Lim;Kim, Dae Choul;Lee, Tae Hee;Seo, Young Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.

Effect of Different Fertilization Management Practices on Soil Microbial Activities and Community Structure in Volcanic Ash Citrus Orchard Soil (화산회토 감귤원 토양의 시비관리가 토양미생물활성 및 군집구조에 미치는 영향)

  • Joa, Jae-Ho;Han, Seung-Gap;Won, Hang-Yeon;Lim, Han-Cheol;Hyun, Hae-Nam;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • This study was performed to evaluate effect of different fertilization management practices on soil microbial activities and community structure using soil enzyme activities and PLFA contents in volcanic ash citrus orchard soil. Six experiment plots have differently managed based on the recommended application rate(NPK) of chemical fertilizer and compost for 13 years. Experiment plots were composed of no-fertilization(control), compost only, half amount of NPK with compost (1/2NPK+COM), NPK, NPK with compost(NPK+COM), and 3 times amount of NPK(3NPK). Soil samples collected in early March, May, July, and September 2007. Urease activity was high at NPK+COM in March, May, and September. It was higher in NPK+COM than in NPK. Urease activity decreased according to the order NPK>compost>control in March and May; compost>NPK>control in July and September. Dehydrogenase activity was significantly higher in 1/2NPK+COM($4.3ug\;TPF\;g^{-1}\;24h^{-1}$) than in control($2.4ug\;TPF\;g^{-1}\;24h^{-1}$), May. $\beta$-glucosidase activity was significantly higher in NPK and 1/2NPK+COM than in control, May. In March, Total PLFA contents were higher in NPK+COM($349.2n\;mol\;g^{-1}$) than in 3NPK($228.5n\;mol\;g^{-1}$). And that were higher in 1/2NPK+COM($237.8n\;mol\;g^{-1}$) than in 3NPK($133.1n\;mol\;g^{-1}$), May. Distribution ratio of soil microbial groups by PLFA biomaker were not significantly difference in between seasonal and treatments. Principal component analysis by PLFA profiles showed that microbial community in compost and 3NPK plot were different compared with other treatments in March. But Differences in compost and 3NPK plot were not found in May. Our result showed that the change of microbial community structure affected by fertilization effect and seasonable variation.

Structure Change of Macrozoobenthic Community After 10 years in Youngsan River Estuarine Bay, Southwest Coast of Korea (영산강 하구역 저서동물 군집구조의 10년 전후 변화)

  • Lim, Hyun-Sic;Seo, Chong-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.254-267
    • /
    • 2011
  • In order to assess structure changes of marine benthic communities in the Youngsan River Estuarine Bay for this 10-year period, we sampled macrobenthos in 2006 using the van Veen grab at the same 40 stations where a previous benthic community survey was conducted in 1995. The number of species and mean density of macrobenthos in 2006 decreased significantly than those of 1995. There were no significant differences in both the number and the density of polychaetous species between the two sampling periods, while both number and den-sity of molluscan species decreased significantly. Although the first two density-dominant species, semelid bivalve Theora fragilis and polychaete Tharyx sp. occurred as most dominant species, but the density of T. fragilis decreased significantly in many stations between 1995 and 2006. However, polychaete Tharyx sp. showed increment in density and percentage composition within community. The area dominated by T. fragilis was replaced by Tharyx sp.. Also, polychaete Poecilochaetus johnsoni and bivalve Raetellops pulchella which were pre-dominant in 1995 decreased significantly by 2006. Bivalve Yoldia johanni decreased its density and reduced its distribution area by 2006. Species diversity and rarefaction curves also revealed that overall species richness decreased. These results confirmed that the dominant species and species diversity of macrobenthic communities in the area should be changed due to anthropogenic stresses during 10 years.

Estimation of Changes in Potential Forest Area under Climate Change (기후변화하(氣候變化下)에서 잠재삼림면적(潛在森林面積)의 변화(變化) 예측(豫測))

  • Cha, Gyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.358-365
    • /
    • 1998
  • To offer the basic information for sustainable production of forest resources and conservation of the global environment, change in potential natural vegetation (PNV) associated with climate change due to doubling atmospheric carbon dioxide ($2{\times}CO_2$) was estimated with the global natural vegetation mapping system based an K${\ddot{o}}$ppen scheme. The system interpolates climate data spherically to each grid cell, determines the vegetation types onto the grid cell, and produces potential vegetation map and area on the globe and continents. The climate data consist of the current, ($1{\times}CO_2$) climate prior to AD 1958 observed at some 2,000 stations and the doubling ($2{\times}CO_2$) climate estimated from Meteorological Research Institute of Japan. The vegetation zone under the $2{\times}CO_2$ climate scenario expanded mainly toward the poles due to the rise in temperature. The changed PNV area on the globe amounts to 1/3 (4.91 billion (G) ha) of the total land area (15.04 Gha). Kappa statistic for judging agreement between the patterns of vegetation distribution under $1{\times}CO_2$ climate and $2{\times}CO_2$ climates shows good agreement (0.63) for the globe as a whole. The most stable areas are desert and ice. The potential forest area (PFA) was estimated at 6.82 Gha of the land area in $2{\times}CO_2$ climate scenario. In terms of continental changes in PFA, North America and Asis are increased under the $2{\times}CO_2$ climate. However, the potential forest arms of the other continents are decreased by the climate. Europe has no change in the PFA. Especially, the expansion of desert area in Oceania would be accelerated by the $2{\times}CO_2$ climate.

  • PDF

Constructing Geological Cross-sections at Depth and Interpreting Faults Based on Limited Shallow Depth Data Analysis and Core Logging: Southern Section of the Yangsan Fault System, SE Korea (제한된 천부자료와 시추코어분석을 통한 심부지질단면도 작성과 단층 인지법: 한반도 남동부 양산단층대 주변에서의 적용)

  • Kim, Taehyung;Kim, Young-Seog;Lee, Youngmin;Choi, Jin-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.