Dominant-species Variation of Soil Microbes by Temperate Change

온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구

  • Park, Kap-Joo (Department of Biological Sciences, Konkuk University) ;
  • Lee, Byeong-Chol (Department of Biological Sciences, Konkuk University) ;
  • Lee, Jae-Seok (Department of Biological Sciences, Konkuk University) ;
  • Park, Chan-Sun (Department of Marine Resources, Mokpo National University) ;
  • Cho, Myung-Hwan (Department of Biological Sciences, Konkuk University)
  • 박갑주 (건국대학교 이과대학 생명과학부) ;
  • 이병철 (건국대학교 이과대학 생명과학부) ;
  • 이재석 (건국대학교 이과대학 생명과학부) ;
  • 박찬선 (국립목포대학교 해양자원학과) ;
  • 조명환 (건국대학교 이과대학 생명과학부)
  • Received : 2010.11.24
  • Accepted : 2011.02.10
  • Published : 2011.02.28

Abstract

Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

식물과 그 식물의 근권미생물과의 협력관계는 이미 오래전부터 관심을 받아왔고 지구 기후변화에 따라 식물과 그 근권미생물의 생태 및 지구환경에 대한 적응성은 막대한 지장을 받을 것으로 생각되어 왔다. 따라서 지구온난화에 따라 식물뿌리에 서식하는 근권미생물인 토양미 생물의 우점종이 어떻게 변화하는지에 대해 규명하고자 본 실험을 실시하였다. 우선 한국 식물생태계의 대표종인 소나무 (A), 잣나무 (B), 상수리나무 (C), 오리나무 (D) 를 선발하여 각각 실온인 $27^{\circ}C$$29^{\circ}C$(실온$+2^{\circ}C$), $31^{\circ}C$(실온$+4^{\circ}C$), $33^{\circ}C$(실온$+6^{\circ}C$)에서 1년 이상 성장시킨 후 이들의 뿌리토양을 무균적으로 채취하여 미생물 screening법과 colony counting을 통하여 각각의 군에서 우점종을 선별한 뒤 16S rRNA 분석에 의해 이들 각각의 우점종을 동정하였다. 그 결과 소나무 $27^{\circ}C$에서는 Bacillus cereus와 Enterobacter sp. CCBAU 15492, 소나무 $29^{\circ}C$에서는 Bacillus sp. 210_64와 Enterobacter sp. CCBAU 15492, 소나무 $31^{\circ}C$에서는 Bacillus sp. 210_64와 Enterobacter ludwigii, 소나무 $33^{\circ}C$에서는 Bacillus sp. 210_64와 Enterobacter sp. CCBAU 15492, Bacillus marisflavistrain DS6이 검출되었고, 잣나무 $27^{\circ}C$에서는 Bacillus cereus Q1, Pseudomonas sp. PR1-3, Arthrobacter woluwensisstrain CBU05/5295, 잣나무 $29^{\circ}C$에서는 Bacillus sp. G3, Pseudomonas sp. PR1-3, Bacillus sp. 210_24, 잣나무 $31^{\circ}C$에서는 Bacillus cereus Q1, Pseudomonas sp. PR1-3, 잣나무 $33^{\circ}C$에서는 Bacillus coagulans strain, Pseudomo-Dominant-species Change of Soil Microbes 59 nas sp. PR1-3, Chryseobacterium sp. COLI2, 상수리나무 $27^{\circ}C$에서는 Bacillus cereus strain B1, Pseudomonas putida strain W30, Arthrobacter woluwensis strain CBU05/5295, 상수리나무 $29^{\circ}C$에서는 Bacillus cereus strain CICC10185, Pseudomonas putida strain W30, 상수리나무 $31^{\circ}C$에서는 Bacillus cereus strain CG-T2, Pseudomonas sp. W15Feb9B, 상수리나무 $33^{\circ}C$에서는 Bacillus sp. CCBAU 51490, Arthrobacter woluwensis strain CBU05/5295, 오리나무 $27^{\circ}C$에서는 Bacillus sp. B18, Pseudomonas sp. PD 16, Enterobacter sp. CCBAU 15492, 오리나무 $29^{\circ}C$에서는 Rhodococcus erythropolis PR4, 오리나무 $31^{\circ}C$에서는 Enterobacter cloacae, Pseudomonas sp. PD 16, 오리나무 $33^{\circ}C$에서는 Bacillus subtilis strain SYH15, Pseudomonas sp. PD16을 우점종으로 동정하였다. 이 중 소나무는 $33^{\circ}C$에서 Bacillus marisflavi strain DS6가 $27{\sim}31^{\circ}C$에서는 발견되지 않다가 온도가 상승함에 따라 출현한 새로운 우점종으로 나타났고 잣나무에서는 $27^{\circ}C$에서 Bacillus cereus Q1, $29^{\circ}C$에서는 Bacillus sp. G3, $31^{\circ}C$에서는 Bacillus cereus Q1 등의 Bacillus속이 주요 우점종으로 나타났으나 온도가 가장 많이 상승한 $33^{\circ}C$에서는 Chryseobacterium sp. COLI2으로 우점종이 변한 것을 확인하였다. 본 실험은 차후 더 다양한 온도에서의 토양미생물 우점종 변화에 대한 연구가 진행되어야 할 것으로 사료되며 이들 연구결과들이 연계되어 지구온난화와 미생물의 관계, 그리고 새롭게 출현한 토양미생물과 식물간의 관계를 규명하는데 도움이 되는 데이터가 도출 될 것으로 기대된다.

Keywords

References

  1. 김윤식, 고성철, 오병운. 1981. 한국식물의 분포도에 관한 연구(V). 참나무과의 분포도. 고려대학교 이론공집. pp.93-133.
  2. 산림청. 1999. 산림입지조사요령.
  3. 임업연구원. 1999. 소나무 소나무림. 임업연구원.
  4. 정태현, 이우철. 1965. 한국삼림식물대 및 적지적수론. 성균관대학교논문집. 10:329-435.
  5. Abbott S. 1999. Klebsiella pneumoniae, Enterobacter, Citrobacter, and Serratia. Manual of Clinical Microbiology. 7th ed. American Society for Microbiology Press., Washington D.C. pp. 475-482.
  6. Amin El, HS Hanson, B Petterson, B Petrini and LV Von Stedingk. 2000. Identification of non-tuberculous mycobacteria: 16S rRNA gene sequence analysis vs. conventional methods. Scand J Infect Dis 32:47-50. https://doi.org/10.1080/00365540050164218
  7. Brandsch R. 2006. Microbiology and biochemistry of nicotine degradation. Appl. Microbiol. Biotechnol. 69:493-498. https://doi.org/10.1007/s00253-005-0226-0
  8. Chang HW, JW Bae, YD Nam, HY Kwon, JR Park, KS Shiin, KH Kim, ZX Quan, SK Rhee, KG An and YH Park. 2007. Arthrobacter subterraneus. sp. nov., isolated from deep subsurface water of the south coast of Korea. J. Microbiol. Biotechnol. 17:1875-1879.
  9. Choi MY. 2003. Microbial Diversity on an Industrialized and Agricultural District. Department of Biotechnology and Chemical Engineering Graduate School Yosu National University. pp.2-3.
  10. Dunbar J, S Takara, SM Barns, JA Davis and CR Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65:1662-1669.
  11. Houghton J. 2007. Global Warming. Hanul Academy.
  12. Kuroyanagi M, M Simomae, Y Nagashima, M Muto, T Okuda, N Kawahara, T Nakane and T Sano. 2005. New diarylheptaniods from Alnus Japonica and their antioxidative activity. Chem. Pharm, Bull. 53:1519-1523. https://doi.org/10.1248/cpb.53.1519
  13. Lee JS, KC Lee and Bae KS. 2003. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. int. J. Syst. Evol. Microbiol. 53:1277-1280. https://doi.org/10.1099/ijs.0.02492-0
  14. Mantelin S and B Touraine. 2004. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot. 55:27-34.
  15. Sanders WE Jr. and CC Sanders. 1997. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 10:220-241.
  16. Xu Z, H Dai and X Li. 1986. Rational management of broadleaved Pinus Koraiensis (korean pine) forest and improvement of woodland productivity in north-east China. The Temperate Forest Ecosystem. Institute of Terrestrial Ecology. National Environment Research Council. pp.59-67.
  17. Yoon SY. 2008. Microbiological Diversity of Highland and Development of Biological Assessment Technology. Rural Development Administration. pp.1-3.