DOI QR코드

DOI QR Code

Characteristics of Heavy Minerals in the South East Yellow Sea Mud (SEYSM) and South West Cheju Island Mud (SWCIM)

황해남동니질대와 제주남서니질대 표층퇴적물의 중광물 특성 비교 연구

  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Bu Yeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yi, Hi Il (Marine Geology and Geophysics, Korea Institute of Ocean Science and Technology)
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이부영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이희일 (한국해양과학기술원 해저환경자원연구본부)
  • Received : 2017.08.04
  • Accepted : 2017.08.25
  • Published : 2017.09.30

Abstract

Heavy mineral provide an important information for sediment provenance as well as a potential submarine mineral resources. We compared the heavy mineral characteristics between Southeastern Yellow Sea Mud (SEYSM) and Southwestern Cheju Island Mud (SWCIM) surface sediments. We separated heavy minerals from 28 surface sediments in each mudbelt, and then carried out stereo-microscopic, field-emission scanning electron microscopic, energy dispersive spectroscopic and electron probe microanalysis to characterize the type, abundance, mineralogical properties and distribution pattern of heavy mineral. Amphibole and epidote, which are two major heavy minerals, account for more than 70% of total heavy minerals. Zircon and sphene contents are more abundant in SEYSM, whereas apatite and rutile contents are more abundant in SWCIM. Monazite only occurs in some area of SEYSM. Sphene and monazite content decrease to the south in SEYSM. Both garnet-zircon index (GZi) and rutile-zircon index (RuZi) are low in SEYSM but high in SWCIM. Amphiboles in SEYSM primarily correspond to hornblende, however those in SWCIM represent variable composition from pargasite, tshermakite, hornblende to tremolite. Garnets in SEYSM have high Mg and low Ca, but those in SWCIM have low Mg with variable Ca. Different heavy mineral characteristics between SEYSM and SWCIM suggests that sediments in each mudbelt have different provenances. Although this study implies that SEYSM sediment may mostly come from nearby Korean western rivers such as the Keum and Han rivers, this study does not suggest any idea of the source area of SWCIM sediment. Further study is needed to interpret the provenance and transportation mechanism of mudbelt sediments through the heavy mineral research for the river sediments flowing into the Yellow Sea and much more marine sediments.

조립질 퇴적물의 근원지에 관한 정보를 제공할 뿐만 아니라 유용 광물자원으로서의 가치를 지니는 황해남동니질대와 제주남서니질대 표층퇴적물 내 중광물의 특성을 비교 연구하였다. 두 지역에서 각각 28개씩 시료를 선정하여 중광물을 분리한 후 실체현미경과 주사전자현미경 관찰, 에너지 분산형 분광분석과 전자현미분석을 실시하였다. 각섬석과 녹염석은 연구지역에서 주된 중광물로서 두 광물의 합계 함량이 70% 이상을 점유한다. 저어콘과 스핀은 황해남동니질대에서, 인회석과 금홍석은 제주남서니질대에서 상대적으로 많은 함량을 나타내며, 모나자이트는 황해남동니질대 일부 지역에서만 산출된다. 스핀과 모나자이트 함량은 황해남동니질대 북부에서 남부로 갈수록 감소하는 경향을 보여준다. 황해남동니질대는 낮은 석류석-저어콘 지수와 금홍석-저어콘 지수를 가지는데 반하여, 제주남서니질대는 높은 석류석-저어콘 지수와 금홍석-저어콘 지수를 가진다. 각섬석의 경우 황해남동니질대는 대부분 보통각섬석에 해당되지만, 제주남서니질대는 파가사이트, 처마카이트, 보통각섬석, 투각섬석 등 다양한 조성을 가진다. 황해남동니질대 지역의 석류석은 높은 Mg와 낮은 Ca 함량을, 제주남서니질대 지역 석류석은 낮은 Mg와 다양한 Ca 함량을 가진다. 이와 같이 두 지역의 중광물 특성이 서로 다른 것은 두 지역의 퇴적물 기원지가 다르다는 것을 지시한다. 황해남동니질대의 퇴적물 기원지는 인접한 한반도의 서해안으로 유입되는 하천 퇴적물인 것으로 여겨지나, 추후 황해로 유입되는 강퇴적물과 해양 퇴적물에 대한 추가적인 중광물 연구가 진행되어야만 정확한 기원지와 퇴적과정에 대한 해석을 할 수 있을 것으로 판단된다.

Keywords

References

  1. Chae, S.C., Shin, H.Y., Jung, J.S., Jang, Y.N., and Bae, I.K. (2007) Mineralogy of beach sand in Jaeun Island, Shinangun, Chonranamdo. Journal of the Mineralogical Society of Korea, 20, 289-302 (in Korean with English abstract).
  2. Chae, S.C., Shin, H.Y., Bae, I.K., Kwon, S.W., Lee, S.J., Kim, W.T., Lee, C.O., and Jang, Y.N. (2009) Separation and mineralogy of marine sand near Haeju bay, North Korea. Journal of the Mineralogical Society of Korea, 22, 217-227 (in Korean with English abstract).
  3. Chae, S.C., Shin, H.Y., Bae, I.K., Kwon, S.W., Lee, C.O., Kim, J.Y., and Jang, Y.N. (2011) Mineralogy of sea sand near Ongjingun through the separation processes. Journal of the Mineralogical Society of Korea, 24, 1-17 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.1.001
  4. Decou, A., H. von Eynatten, A., M. Mamani, M., T. Sempere, T., and G. Worner, G. (2011) Cenozoic forearc basin sediments in Southern Peru (15-$18^{\circ}S$): Stratigraphic and heavy mineral constraints for Eocene to Miocene evolution of the Central Andes. Sedimentary Geology, 237, 55-72. https://doi.org/10.1016/j.sedgeo.2011.02.004
  5. Hallsworth, C.R. and Chisholm, J.I. (2008) Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sedimentary Geology, 203, 196-212. https://doi.org/10.1016/j.sedgeo.2007.11.002
  6. Hallsworth, C.R., Morton, A.C., Claoue-Long, J., and Fanning, C.M. (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sedimentary Geology, 137, 147-185. https://doi.org/10.1016/S0037-0738(00)00153-6
  7. Hawthorne, F.C. (1981) Crystal chemistry of the amphiboles. In: Veblen, D.R. (ed) Amphiboles and their Other Hydrous Pyriboles-Mineralogy, Reviews in Mineralogy, 9A, 1-102.
  8. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031-2048. https://doi.org/10.2138/am.2012.4276
  9. Hu, D.X. (1984) Upwelling and sedimentation dynamics. Chinese Journal of Oceanology and Limnology, 2, 12-19. https://doi.org/10.1007/BF02888388
  10. Kang, T.G. (2003) Beach and sanddune development along the coastline of the Chungcheong-Namdo province. Journal of Korean Earth Science Society, 24, 568-577 (in Korean with English abstract).
  11. Klein, C. and Dutrow, B. (2009) Manual of Mineral Science (23th Ed.). John Woley & Sons, INC., New York, 444-498.
  12. Lee, B.Y., Cho, H.G., Kim, S.-O., and Hi Il Yi, H. Y. (2016) Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud. Journal of Minereralogical Society of Korea, 29(1), 1-10 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2016.29.1.1
  13. Lee, H.J. and Chough, S.K. (1989) Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology, 87, 255-266.
  14. Lee, H.B., Oh, J.K., Kim, S.W., and Lee, S.R. (1997) Sedimentologic and mineralogic study in surface sediment off Biin Bay, west coast of Korea. Journal of Korean Earth Science Society, 18, 259-266 (in Korean with English abstract).
  15. Lee, H.J., Jeong, K.S., Han, S.J., and Bahk, K.S. (1988) Heavy minerals indicative of Holocene transgression in the southeastern Yellow Sea. Continental Shelf Research, 8, 255-266. https://doi.org/10.1016/0278-4343(88)90032-5
  16. Lee, Y.H., Chi, J.M., and Oh, J.K. (2004) Geochemical relationship between stream sediments and regional geology of the upstream for the Hahn River drainage basin, Korea. Economic and Environmental Geology, 37, 153-171 (in Korean with English abstract).
  17. Mange, M. A. and Morton, A. C. (2007) Geochemistry of heavy minerals. In: Mange, M. A. and Wright, D. T. (eds) Heavy Minerals in Use. Elsevier, 58, 345-391.
  18. Meinhold, G., Reischmann, T., Kostopoulos, D., Frei, D., and Larionov, A.N. (2010) Mineral chemical and geochronological constraints on the age and provenance of the eastern Circum-Rhodope Belt low-grade metasedimentary rocks, NE Greece. Sedimentary Geology, 229, 207-223. https://doi.org/10.1016/j.sedgeo.2010.06.007
  19. Milliman, J. D. and Meade, R. H. (1983) Worldwide delivery of river sediment to the oceans. The Journal of Geology, 91, 1-21. https://doi.org/10.1086/628741
  20. Morton, A. C. (1984) Stability of detrital heavy minerals in Tertiary sandstones of the North Sea Basin. Clay Minerals, 19: 287-308. https://doi.org/10.1180/claymin.1984.019.3.04
  21. Morton, A. C. (1991) Stability of detrital heavy minerals in Tertiary sandstones of the North Sea Basin. Clay Minerals, 19: 287-308.
  22. Morton, A. C. and Hallsworth, C. R. (1994) Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology. 90: 241-256. https://doi.org/10.1016/0037-0738(94)90041-8
  23. Morton, A.C. and Hallsworth, C.R. (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 329.
  24. Morton, A. C., Hallsworth, C. R., and Chalton, B. (2004) Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Marine and Petroleum Geology, 21: 393- 410. https://doi.org/10.1016/j.marpetgeo.2004.01.001
  25. Morton, A. C., Whitham, A. G., and Fanning, C. M. (2005) Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 182: 3-28. https://doi.org/10.1016/j.sedgeo.2005.08.007
  26. Morton, A.C., Meinhold, G., Howard, J.P., Phillips, R.J., Strogen, D., Abutarruma, Y., Elgadry, M., Thusu, B., and Whitham, A.G. (2011) A heavy mineral study of sandstones from the eastern margin of the Murzuq Basin, Libya: constraints on provenance and stratigraphic correlation. Journal of African Earth Sciences, 61, 308-330. https://doi.org/10.1016/j.jafrearsci.2011.08.005
  27. Park, B.C. and Lee, J.K (1968) Monazite placer of Republic of Korea. Report for Geology and Ore Deposit, 10, 133-152 (in Korean with English abstract).
  28. Shi, C., Zhang, D.D., and You, L. (2003) Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal. Marine Geology, 199, 13-25. https://doi.org/10.1016/S0025-3227(03)00159-2
  29. Von Eynatten, H. and Gaupp, R. (1999) Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 124, 81-111. https://doi.org/10.1016/S0037-0738(98)00122-5
  30. Whitham, A.G., Morton, A.C., and Fanning, C.M. (2004) Insights into Cretaceous-Palaeogene sediment transport paths and basin evolution in the North Atlantic from a heavy mineral study of sandstones from southern East Greenland. Petroleum Geoscience, 10, 61-72. https://doi.org/10.1144/1354-079302-506