Browse > Article
http://dx.doi.org/10.9720/kseg.2016.2.277

Constructing Geological Cross-sections at Depth and Interpreting Faults Based on Limited Shallow Depth Data Analysis and Core Logging: Southern Section of the Yangsan Fault System, SE Korea  

Kim, Taehyung (Division of Earth Environmental System Science Major of Environmental Earth & Environmental Sciences)
Kim, Young-Seog (Division of Earth Environmental System Science Major of Environmental Earth & Environmental Sciences)
Lee, Youngmin (Korean Institute of Geoscience and Mineral Resources (KIGAM))
Choi, Jin-Hyuck (Institut de Physique du Globe de Paris)
Publication Information
The Journal of Engineering Geology / v.26, no.2, 2016 , pp. 277-290 More about this Journal
Abstract
Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.
Keywords
Yangsan Fault System; heat flow; rock distribution; core logging; geological cross-sections;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Kim, G. -S., Kim, J. -Y., Jung, K. K., Hwang, J. -Y., and Lee, J. -D., 1995, Rb-Sr Whole Rock Geochronology of the Granitic Rocks in the Kyeongju-Gampo Area, Kyeongsangbugdo, Korea, Jour. Korean Earth Science Society, 16(4), 272-279.
2 Kim, H. C. and Lee, Y., 2007, Heat flow in the Republic of Korea, Journal of Geophysical Research, 112, doi:10.1029/2006JB004266.   DOI
3 Kim, J. -Y., 1993, Fault System and Fracture Zone of the Yangsan Fault, Jour. Korean Earth Science Society, 14(3), 281-299.
4 Kim, K. Y., Hong, M. H., Lee, J. M., Moon, W. I., Baag, C. E., and Jung, H. O., 2005, Crustal Structure of the Korean Peninsula by Inverting the Rravel Times of First-arrivals from Large Explosions, Jour. Korean Geophysical Society, 8(1), 45-48.
5 Kim, N. J., Kwon, Y. I., and Jin, M. S., 1971, 1:50,000 the geological map of Moryang sheet, Geological survey of Korea.
6 Kim, Y. H. and Lee, K. H., 1988, A Geoelectric Study on the Structure of the Yangsan Fault in the South of Kyeongju, The Journal of the Geological Society of Korea, 24(1), 47-61.
7 Kim, Y. -S., Peacock, D. C. P., and Sanderson, D. J., 2003, Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25, 793-812.   DOI
8 Kim, Y. -S., Peacock, D. C. P., and Sanderson, D. J., 2004, Fault damage zones, Journal of Structural Geology, 26, 503-517.   DOI
9 Kim, Y. -S. and Sanderson, D. J., 2005, The relationship between displacement and length of faults: a review, Earth-Science Reviews, 68, 317-334.   DOI
10 Kim, Y. -S. and Sanderson, D. J., 2010, Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves, Journal of Structural Geology, 32, 1305-1316.   DOI
11 Knott, S. D., Beach, A., Brockbank, P. J., Brown, J. L., McCallum, J. E., and Welbon, A. I., 1996, Spatial and mechanical controls on normal fault populations, Journal of Structural Geology, 18, 359-372.   DOI
12 Konstantinovskaya, E., Rutqvist, J., and Malo, M., 2014, CO2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling, Journal of Greenhouse Gas Control, 22, 88-110.   DOI
13 Korea Institute of Geoscience and Mineral Resources (KIGAM), 1964, 1:50,000 Geological map of the Yangsan sheet (in Korean).
14 Korea Institute of Geoscience and Mineral Resources (KIGAM), 1996, 1:250,000 Geological map of the Busan sheet, 62 (in Korean).
15 Kyung, J. B., Lee, K. H., Okada, A., Watanabe, M., Suzuki, Y., and Takemura, K., 1999a, Study of Fault Characteristics by Trench Survey in the Sangchon-ri Area in the Southern Part of Yangsan Fault, Southeastern Korea, The Journal of Korean Earth Science Society, 20(1), 101-110.
16 Kyung, J. B., Han, S. H., Cho, H. J., and Kim, J. S., 1999b, Shallow Electrical Resistivity and VLF Profiling at Sangchon-ri Area along the Southern Part of Yangsan Fault, The Journal of Engineering Geolog, 9(1), 59-68.
17 Kyung, J. B., 2010, Paleoseismological Study and Evaluation of Maximum Earthquake Magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea, Jigu-Mulli-wa-Mulli-Tamsa, 13(3), 187-197.
18 Kyung, J. B. and Lee, K. H., 2006, Active Fault Study of the Yangsan FAult System and Ulsan Fault System, Southeastern Part of the Korean Peninsula, Journal of the Korean Geophysical Society, 9, 219-230.
19 Lacroix, B., Buatier, M., Labaume, P., Travé, A., Dubois, M., Charpentier, D., Ventalon, S., and Convert-Gaubier, D., 2011, Microtectonic and geochemical characterization of thrusting in a foreland basin: example of the South-Pyrenean orogenic wedge (Spain), J. Struct. Geol., 33, 1359-1377.   DOI
20 Lee, J. I., Kangami, H., and Nagao, K., 1995, Rb-Sr and K-Ar age determinations of the granitic rocks in the southern part of the Kyeongsang basin, Korea: Implication for cooling history and evolution of granitic magmatism during late Creataceous, Geochemical Journal, 29, 363-376.   DOI
21 Lee, K. H., Jeong, B. G., Kim, Y. H., and Yang, S. J., 1984, A Geophysical Study of the Yangsan Fault Area, Journal of the Geological Society of Korea, 20, 222-240.
22 Lee, K. H., Kim, Y. H., and Chang, T. W., 1986, Seismicity of the Korean Peninsula(II); Seismicity of the northern part of the Yangsan fault, Jour. Geol. Soc. Korea, 22(4), 347-365.
23 Lee, K. H., Lee, J. H., and Kyung, J. B., 1998, A Statistical Analysis of the Seismicity of the Yangsan Fault System, The Journal of Engineering Geology, 8(2), 99-114.
24 Lee, K. H. and Na, S. H., 1983, A study of microearthquake activity of the Yangsan fault, Journal of the Geological Society of Korea, 19, 127-135.
25 Lee, S., Byun, J., Song, H., Park, K. G., and Lee, T. J., 2011, Imaging Fractures by using VSP Data on Geothermal Site, Jigu-Mulli-wa-Mulli-Tamsa, 14, 227-233.
26 Lee, T. J., Han, N., and Song, Y., 2010, Magnetotelluric survey applied to geothermal exploration: An example at Seokmo Island, Korea, Jigu-Mulli-wa-Mulli-Tamsa, 13, 61-68.
27 Lee, Y. J. and Lee, I. K., 1972, 1:50,000 the geological map of Eonyang sheet, Geological survey of Korea.
28 Micarelli, L., Moretti, I., and Daniel, J. M., 2003, Structural properties of rift-related normal faults: the case study of the Gulf of Corinth, Greece. J. Geodyn., 36, 275-303.   DOI
29 Mandl, G., 1988, Mechanics of Tectonic Faulting. Models and Basic Consepts, Elsevier, Amsterdam.
30 Martin, S., Uzkeda, H., Poblet, J., Bulnes, M., and Rubio, R., 2013, Construction of accurate geological cross-sections along trenches, cliffs and mountain slopes using photogrammetry, Computers and Geosciences 51, 90-100.   DOI
31 Mitchell, T. M. and Faulkner, D. R., 2009, The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile, J. Struct. Geol., 31, 802-816.   DOI
32 Molli, G., Cortecci, G., Vaselli, L., Ottria, G., Cortopassi, A., Dinelli, E., Mussi, M., and Barbieri, M., 2010, Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy), J. Struct. Geol., 32, 1334-1348.   DOI
33 Na, C. K., 1994, Genesis of granitoid batholiths of Okchonzone, Korea and its implications for crustal evolution. Ph.D. dissertation, University of Tsukuba, Japan.
34 Okada, A., Watanabe, M., Sato, H., Jun, M. S., Jo, W. R., Kim, S. K., Jeon, J. S., Choi, H. C., and Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, Southeast Korea, Journal of Geography, 103, 111-126   DOI
35 Ondrak, R., Wenderoth, F., Scheck, M., and Bayer, U., 1998, Integrated geothermal modeling on different scales in the Northeast German basin, Geol Rundsch, 87, 32-42.   DOI
36 Reyer, D., Bauer, J. F., and Philipp, S. L., 2012, Fracture systems in normal fault zones crosscutting sedimentary rocks, Northwest German Basin, J. Struct. Geol. 45, 38-51.   DOI
37 Parry, W. T. and Blamey, N. J. F., 2010, Fault fluid composition from fluid inclusion measurements, Laramide age Uinta thrust fault, Utah. Chem. Geol., 278, 105-119.   DOI
38 Peacock, D. C. P., Knipe, R. J., and Sanserson, D. J., 2000, Glossary of normal faults, Journal of Structural Geology, 22, 291-305.   DOI
39 Polit, A. T., Schultz, R. A., and Soliva, R., 2009, Geometry, displacement-length scaling, and extensional strain of normal faults on Mars with inferences on mechanical stratigraphy of the Martian crust, Journal of Structural Geology, 31, 662-673.   DOI
40 Riley, P. R., Goodwin, L. B., and Lewis, C. J., 2010, Controls on fault damage zone width, structure, and symmetry in the Bandelier Tuff, New Mexico, J. Struct. Geol., 32, 766-780.   DOI
41 Ryoo, C. R., Chwae, U. C., and Choi, S. J., 2002, The Characteristics of the Quatanary faults and Geological Structures of the Sangchon-ri area in Ulsan, The Korean Society of Engineering Geology abstract, 193-200.
42 Savage, H. M. and Brodsky, E. E., 2011, Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, Journal of Geophysical Research, 116, B03405.   DOI
43 Schueller, S., Braathen, A., Fossen, H., and Tveranger, J., 2013, Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: statistical analysis of field data, J. Struct. Geol., 52, 148-162.   DOI
44 Shon, H. W., Yun, H. S., and Oh, J. Y., 2000, A Study on the Deep Structure of Yangsan Fault by Electric and Electromagnetic Surveys in Unyang and Bong-gye Areas, Kyeongnam Province, Korea, The Journal of Economic Environmental Geology, 33(6), 525-536.
45 Shipton, Z. K. and Cowie, P. A., 2001, Damage zone and slip-surface evolution over mm to km scales in high-porosity Navajo sandstone, Utah, Journal of Structural Geology, 23, 1825-1844.   DOI
46 Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., and Snelgrove, S., 2002, Structural heterogeneity and permeability in eolian sandstone: implications for subsurface modeling of faults, American Association of Petroleum Geologists Bulletin, 86, 863-883.
47 Shipton, Z. K., Soden, A. M., Kirkpatrick, J. D., Bright, A. M., and Lunn, R. J., 2006, How thick is a fault? Fault displacement-thickness scaling revisited. In Abercrombie, R. (Eds) Earthquake: Radiated Energy and the Physics of Faulting, pp. 193-198.
48 Son, M., Kim, J. -S., Chong, H. -Y., Lee, Y. H., and Kim, I. -S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications, Korean Jour. of Petrol. Geol., 13, 1-16.
49 Tateiwa, I., 1928, Geological map of the Taikyu sheet (1:50,000), Geological Survey of Chosen.
50 Torabi, A. and Berg, S. S., 2011, Scaling of fault attributes: A review, Marine and Petroleum Geology, 28, 1444-1460.   DOI
51 Travé, A., Labaume, P., Calvet, F., and Soler, A., 1997, Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain), Tectonophysics, 282, 375-398.   DOI
52 Won, C. K., Kang, P. C., and Lee, S. H., 1978, Study on the Tectonic Interpretation and Igneous Pluton in the Gyeongsang Basin, Journal of the Geological Society of Korea, 14(3), p.79-92.
53 Travé, A., Labaume, P., Calvet, F., Soler, A., Tritlla, J., Buatier, M., Potdevin, J. -L., Séguret, M., Raynaud, S., and Briqueu, L., 1998, Fluid Migration During Eocene Thrust Emplacement in the South Pyrenean Foreland Basin (Spain): an Integrated Structural, Mineralogical and Geochemical Approach, In: Geological Society, London, Special Publications, 134, pp. 163-188.
54 Um, S. H., Choi, H. I., Son, J. D., Oh, J. H., Kwak, Y. H., Shin, S. C., and Yun, H. S., 1983, Geological and Geochemical studies on the Gyeongsang Supergroup in the Gyeongsang Basin, KIER Bulletin-36.
55 Wiltschko, D. V., Lambert, G. R., and Lamb, W., 2009, Conditions during syntectonic vein formation in the footwall of the Absaroka Thrust Fault, Idaho-Wyoming-Utah fold and thrust belt, J. Struct. Geol., 31, 1039-1057.   DOI
56 Xu, X., Bhattacharya, J. P., Davies, R. K., and Aiken, C. I. V., 2001, Digital geologic zap-ping of the Ferron Sandstone, Muddy Creek, Utah, with GPS and reflectorless laser rangefinders, GPS Solutions 19(1), 15-23.   DOI
57 Yang, J. -S. and Lee, H. -K., 2014, Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea, Econ. Environ. Geol., 47(1), 17-27.   DOI
58 Zhang, Y. -B., Zhai, M., Hou, Q. -L., Li, T. -S., Liu, F., and Hu, B., 2012, Late Cretaceous volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton, Journal of Asian Earth Sciences, 47, 252-264.   DOI
59 Barnett, J. A. M., Mortimer, J., Rippon, J. H., Walsh, J. L., and Watterson, J., 1987, Displacement geometry in the volume containing a single normal fault: American Association of Petroleum Geologists Bulletin, 71, 925-938.
60 Badertscher, N. P., Beaudoin, G., Therrien, R., and Burkhard, M., 2002, Glarus overthrust: a major pathway for the escape of fluids out of the Alpine orogen, Geology, 30, 875-878.   DOI
61 Buckley, S. J., Howell, J. A., Enge, H. D., and Kurz, T. H., 2008, Terrestrial laser scanning in geology; data acquisition, processing and accuracy considerations, Journal of the Geological Society, 165(3), 625-638.   DOI
62 Beach, A., Welbon, A. I., Brockbank, P. J., and McCallum, J. E., 1999, Reservoir damage around faults: outcrop examples from the Suez Rift, Pet. Geosci. 5, 109-116.   DOI
63 Berg, S. S. and Skar, T., 2005, Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah, Journal of Structural Geology, 27, 1803-1822.   DOI
64 Bolton, A. and Maltman, A., 1998, Fluid-flow pathways in actively deforming sediments: the role of pore fluid pressures and volume change, Marine and Petroleum Geology, 15, 281-297.   DOI
65 Caine, J. S., Evans, J. P., and Forster, C. B., 1996. Fault zone architecture and permeability structure, Geology, 24, 1025-1028.   DOI
66 Cao, J., Jin, Z., Hu, W., Zhang, Y., Yao, S., Wang, X., Zhang, Y., and Tang, Y., 2010. Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements, Mar. Pet. Geol. 27, 61-68.   DOI
67 Chae, B. -G. and Chang, T. W., 1994, Movement history of yangsan fault and its related fractures at Chongha-Yongdok area, Korea, Jour. Geol. Soc. Korea, 30(4), 379-394.
68 Chang, C. J. and Chang, T. W., 1998, Movement history of the Yangsan fault based on paleostress analysis, The Journal of Engineering Geology, 8(1), 35-49.
69 Chang, C. J. and Chang, T. W., 2002, Structural characteristics and kinematic analysis of the Yangsan fault, The Korean Society of Engineering Geology abstract, 163-171
70 Chang, C. J. and Chang, T. W., 2009, Behavioral characteristics of the Yangsan fault based on geometric analysis of fault slip, The Journal of Engineering Geology, 19(3), 277-285.
71 Chang, K. H., 1975, Cretaceous stratigraphy of southeast Korea, J. Geol. Soc. Korea, 11, 1-23.
72 Chang, K. H., 1978, Late mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea(II), The Journal of Geology Society of Korea, 14(3), 120-135.
73 Chang, K., Woo, B., Lee, J., Park, S., and Yao, K., 1990, Cretaceous and Early Cenozoic stratigraphy and history of eastern Kyongsang Basin, South Korea, Journal of the Geological Society of Korea, 26, 471-487
74 Chester, F. M. and Logan, J. M., 1986, Composite planar fabric of gouge from the Punchbowl fault zone, California, Journal of Structural Geology, 9, 621-634.   DOI
75 Choi, H. I., Oh, J. H., Shin, S. C., and Yang, M. Y., 1980, Geology and geochemistry of the Gyeongsang strata in Ulsan area, Korea Institute Geology, Mining & Materials Bulletin, 20, 33.
76 Choi, J. -H., Yang, S. -J. and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea, Journal of the Geological Society of Korea, 45(1), 9-28.
77 Choi, J. -H., Edwards, P., Ko, K., and Kim, Y. -S., 2016, Definition and classification of fault damage zones: A review and a new methodological approach, Earth-Science Reviews, 152, 70-87.   DOI
78 Chough, S. K. and Sohn, Y. K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view, Earth-Science Reviews, 101, 225-249.   DOI
79 Dietrich, D., McKenzie, J. A., and Song, H., 1983, Origin of calcite in syntectonic veins as determined from carbon-isotope ratios, Geology, 11, 547-551.   DOI
80 Cowie, P. A. and Shipton, Z. K., 1998. Fault tip displacement gradients and process zone dimensions, Journal of Structural Geology, 20, 983-997.   DOI
81 Du Bernard, X., Labaume, P., Darcel, C., Davy, P., and Bour, O., 2002, Cataclastic slip band distribution in normal fault damage zones, Nubian sandstones, Suez rift, J. Geophys. Res., 107 (B7), 2141, http://dx.doi.org/10.1029/2001JB000493.   DOI
82 Faulkner, D. R., Lewis, A. C., and Rutter, E. H., 2003, On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 367(3-4), 235-251.   DOI
83 Fossen, H. and Hesthammer, J., 2000, Possible absence of small faults in the Gullfaks Field, northern North Sea: implications for downscaling of faults in some porous sandstone, J. Struct. Geol., 22, 851-863.   DOI
84 Fossen, H., Schultz, R. A., Shipton, Z. K., and Mair, K., 2007, Deformation bands in sandstone: a review. Journal of the Geologcial Society, London, 164, 1-15.   DOI
85 Hong, S. H. and Choi, P. -Y., 1988, 1:50,000 the geological map of the Yuchon sheet. Korea Institute of Energy and Resources.
86 Hwang, B. -H., Lee, J. -D., and Yang, K. H., 2004, Petrological study of the granitic rocks around the Yangsan Fault: lateral Displacement of the Yangsan Fault, Journal of the Geological Society of Korea, 40(2), 161-178.
87 Kang, P. J., 1981, Geologic evolution of Korea and inal basins in the western Pacific, Jour. of Geophysical Research, 76, 2542-2561.