DOI QR코드

DOI QR Code

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea

남해 가막만의 현생퇴적층 발달특성

  • Kim, So Ra (Department of Energy Resource Engineering, Pukyong National University) ;
  • Lee, Gwang Soo (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Dong Lim (South Sea Research Institute, Korea Institute of Ocean Science & Technology) ;
  • Kim, Dae Choul (Department of Energy Resource Engineering, Pukyong National University) ;
  • Lee, Tae Hee (Maritime Security Research Center, Korea Institute of Ocean Science & Technology) ;
  • Seo, Young Kyo (Gematek Corporation)
  • 김소라 (부경대학교 에너지자원공학과) ;
  • 이광수 (한국지질자원연구원 석유해저연구본부) ;
  • 최동림 (한국해양과학기술원 남해특성연구부) ;
  • 김대철 (부경대학교 에너지자원공학과) ;
  • 이태희 (한국해양과학기술원 해양방위센터) ;
  • 서영교 (지마텍 주식회사)
  • Received : 2013.11.26
  • Accepted : 2014.03.01
  • Published : 2014.05.28

Abstract

High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.

남해대륙붕 가막만의 현생퇴적층 음향특성과 분포양상을 조사하기 위해 고해상도 탄성파 자료와 퇴적물을 분석하였다. 표층퇴적물의 입도는 주로 $6.3{\sim}9.7{\Phi}$의 분포를 보인다. 퇴적물은 니질과 실트로 구성되어 있으며, 내만으로 갈수록 입도가 감소한다. 고해상도 탄성파 자료에서 나타나는 가막만의 층서는 하부 경계면인 음향기반암 위로 2개의 퇴적층서(GB I과 II)로 구성되며 이들 층서는 중간 반사 경계면(최대해침면)에 의해 구분된다. 매우 불규칙한 형태를 보이는 음향기반암은 일반적으로 해수면 아래 약 20 m에서부터 최대 40 m 깊이에서 나타나며, 남쪽으로 갈수록 깊어진다. 하부층인 GB I은 수로를 피복하는 형태로 발달하고 있으며 무층리 반사 특징을 보인다. 이는 후기 해침동안 퇴적된 해침퇴적계열(TST)로, 조간대환경 퇴적층으로 해석할 수 있다. 최대해침면은 평균 해수면 아래 약 15 m에서부터 28 m 깊이에서 나타나며, 탄성파 단면상에서 편평하고 연속적인 반사면으로 나타난다. 최대해침면 위에 놓여있는 GB II는 투명 혹은 반투명한 음향특성, 그리고 평행한 반사 층리로 구성되며, 해수면이 현재의 위치에 도달했던 지난 6,000년 이후에 퇴적된 고해수면 퇴적계열(HST)로 해석된다. 특히, GB II 퇴적층은 고해수면 반사 경계면에 의해 2개의 층(GB II-a and II-b)으로 세분화되며 이는 바람, 해수 유동량, 그리고 조류에 의해 구분된 것으로 생각된다.

Keywords

References

  1. Cattaneo, A. and F. Trincardi, 1999. The late Quaternary transgressive record in the Adriatic epicontinental Sea: Basin widening and facies partitioning. In: Bergman, K.M., Snedden, J.W. (Eds.), Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation. SEPM Spec. Publ., 64: 127-146.
  2. Chang, J.H. and S.S. Chun, 2001. Formation and evolution of the paleo-seomjin river incised-valley system, southern coast of Korea: 1. Sequence stratigraphy of late Quaternary sediments in Yosu Strait. J. Korean Soc. Oceanogr., 6: 142-151.
  3. Choi, D.L., S.M. Hyun and T.H. Lee, 2002. Recent Geomorphological Changes and late Quaternary Depositional Sequence of Gwangyang Bay, southern coast of Korea. J. Korean Soc. Oceanogr., 8: 35-43.
  4. Choi, D.L. and T.H. Lee, 2007. Development of Sedimentary Sequence in the Masan Bay, South Sea of Korea. Ocean and Polar Research, 29: 411-418. https://doi.org/10.4217/OPR.2007.29.4.411
  5. Damuth, J.E., 1975. Echo characters of the western equatorial Atlantic floor and its relationship to the dispersal and distribution of terrigenous sediments. Mar. Geol., 18: 17-45. https://doi.org/10.1016/0025-3227(75)90047-X
  6. Damuth, J.E., 1980. Use of high-frequency (3.5-12 kHz) ecograms in the study of near-bottom sedimentation processes in the deepsea: a review. Mar. Geol., 38: 51-75. https://doi.org/10.1016/0025-3227(80)90051-1
  7. Damuth, J.E. and D.E. Hayes, 1977. Echo character of the east Brazilian continental margin and its relationship to sedimentary processes. Mar. Geol., 24: 73-95. https://doi.org/10.1016/0025-3227(77)90002-0
  8. Fleming, K., P. Johnston, D. Zwarts, Y. Yokoyama, K. Lambeck and J. Chappell, 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far-and intermediate-field sites. Earth Planet. Sci. Lett., 163: 327-342. https://doi.org/10.1016/S0012-821X(98)00198-8
  9. Han, H.S., 2005. Sequence stratigraphy and depositional environment of the Quaternary deposits on the southern continental shelf of Korea. Ph.D. Dissertation, Chungnam National University, Daejeon, 121 pp.
  10. Hanebuth, T., K. Stattegger and P.M. Grootes, 2000. Rapid flooding of the Sunda Shelf a late-glacial sea level record. Science, 288: 1033-1035. https://doi.org/10.1126/science.288.5468.1033
  11. Kang, H.J. and S.K. Chough, 1982. Gamagyang Bay, southern coast of Korea: Sedimentation on a tide-dominated rocky embayment. Mar. Geol., 48: 197-214. https://doi.org/10.1016/0025-3227(82)90097-4
  12. KIGAM (Korea Institute of Geoscience and Mineral Resource), 2000. Study on Quaternary Depositional Environments in Korean Continental Shelf area. Report of Korea Institute of Geoscience and Mineral Resource. 665 pp.
  13. Kim, B.K., 2006. Marine environment of Gamak Bay by field observations and numerical experiments. Master Thesis, Chonnam National University, Yosu, 97 pp.
  14. Kim, B.K., M.O. Lee and S.J. Park, 2012. Characteristics of Water Temperature and Salinity Variations, and Seawater Exchange in Gamak Bay. J. of Kor. Soc. Mar. Envir. Eng., 15: 101-110. https://doi.org/10.7846/JKOSMEE.2012.15.2.101
  15. Kim, D.C., G.S. Lee, G.H. Lee and S.C. Park, 2008. Sediment echo types and acoustic characteristics of gas-related acoustic anomalies in Jinhae Bay, southern Korea. Geosci. J., 12: 47-61. https://doi.org/10.1007/s12303-008-0007-8
  16. Kim, S.R., 2012. Development of Holocene sediments in semi-closed Gamak Bay, the South Sea of Korea. Master Thesis, Pukyong National University, Busan, 89 pp.
  17. LeBlanc, L.R., L. Mayer, M. Rufino, S.G. Schock and J. King, 1992. Marine sediment classification using the Chirp sonar. J. Acoust. Soc. Am., 91: 107-115. https://doi.org/10.1121/1.402758
  18. Lee, G.H., 1992. The Pattern of Sea Water Circulation in Kamak Bay. Bull. Korean Fish. Tech. Soc., 28: 117-131.
  19. Lee, G.H. and K.D. Cho, 1990. Distributions of the temperature and salinity in Kamak Bay. Bull. Korean Fish. Soc., 23: 25-39.
  20. Lee, G.S., D.C. Kim, G.H. Lee, S.C. Park, G.Y. Kim, D.G. Yoo, J.C. Kim and Gunay Cifci, 2009. Physical and acoustic properties of gas-bearing sediments in Jinhae Bay, the South sea of Korea. Mar. Georesour. Geotechnol., 27: 96-114. https://doi.org/10.1080/10641190802625684
  21. Lee, M.C. and S.D. Chang, 1982. Tidal exchange of sea water in Gamag Bay. J. Oceanal Soc. Korea, 17: 12-18.
  22. Liu, J.P., J.D. Milliman, S. Gao and P. Cheng, 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Mar. Geol., 209: 45-67. https://doi.org/10.1016/j.margeo.2004.06.009
  23. Min, G.H., 1994. Seismic stratigraphy and depositional history of Pliocene-Holocene deposits in the southeastern shelf, Korean Peninsula. Ph.D. Dissertation, Seoul National University, Seoul, 196 pp.
  24. MOF (Ministry of Oceans and Fisheries), 2001. Establishment of action plans for model coastal environmental management areas: Environmental status of the Kamak Bay, a marine conservation area. Report of Ministry of Oceans and Fisheries. 275 pp.
  25. No, I.H., 2003. The distribution of organic matter and its origin in sediment in Gamak Bay, Southern Korea. Master Thesis, Yosu National University, Yosu, 126 pp.
  26. Park, S.C., Y.S. Kim and S.K. Hong, 1991. Shallow seismic stratigraphy and distribution pattern of late Quaternary sediments in a macrotidal bay: Gunhung Bay, west coast of Korea. Mar. Geol., 98: 135-144. https://doi.org/10.1016/0025-3227(91)90041-2
  27. Park, S.C., K.W. Lee and Y.I. Song, 1995. Acoustic characters and distribution pattern of modern fine-grained deposits in a tidedominated coast bay: Jinhae Bay, Southeast Korea. Geo-Mar. Lett., 15: 77-84.
  28. Park, S.E., K.D. Cho, C.H. Hong, D.S. Kim and K.W. Cho, 1999. An Effect of Wind on Circulation in Kamak Bay. J. Korean Fish. Soc., 32: 674-679.
  29. Posamentier, H.W., M.T. Jervey and P.R. Vail, 1988. Eustatic controls on clastic deposition I-Conceptual framework. In: Wiligus, C.K., Posamentier, H., Ross, C.A. and Kendall, C. G. St. C. (Eds.), Sea-Level Changes: An Integrated Approach. Soc. Econ. Paleontol. Mineral. Spec. Publ., 42: 124-154.
  30. Schock, S.G., L.R. LeBlanc and L.A. Mayer, 1989. Chrip subbottom profiler for quantitative sediment analysis. Geophysics, 54: 445-450. https://doi.org/10.1190/1.1442670
  31. Shackleton, N., 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289: 1897-1902. https://doi.org/10.1126/science.289.5486.1897
  32. Song, Y.O., D.H. Yoo and K.R. Dyer, 1983. Sediment distribution, circulation and provenance in a macrotidal bay: Garolim Bay, Korea. Mar. Geol., 52: 121-140. https://doi.org/10.1016/0025-3227(83)90024-5
  33. Stanford, J.D., R. Hemingway, E.J. Rohling, P.G. Challenor, M. Medina-Elizalde and A.J. Lester, 2010. Sea-level probability for the last deglaciation: A statistical analysis of far-field records. Glob. Planet. Change., 79: 193-203.
  34. Tesson, M., H.W. Posamentier and B. Gensous, 2000. Stratigraphy organization of late Pleistocene deposits of the western part of the Golfe du Lion Shelf (Languedoc Shelf), western Mediterranean Sea, using high-resolution seismic and core data. Am. Assoc. Petrol. Geol., 84: 119-150.
  35. Trincardi, F., A. Correggiari and M. Roveri, 1994. Late Quaternary transgressive erosion and deposition in a modern epicontinental shelf: the Adriatic semienclosed Basin. Geo-Mar. Lett., 14: 41-51. https://doi.org/10.1007/BF01204470
  36. Yoo, D.G., C.W. Lee, J.Y. Choi, S.C. Park and J.H. Choi, 2003. Sequence Stratigraphy of Late Quaternary Deposits in the Southeastern Continental Shelf, Korea. The Sea: J. Korean Soc. Oceanogr., 8: 369-379.
  37. Vail, P.R., 1987. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: Seismic stratigraphy interpretation procedure. Am. Assoc. Petrol. Geol. Stud. Geol., 27: 1-10.

Cited by

  1. Past, present, and future for the study of Gamak Bay, Korea vol.23, pp.3, 2014, https://doi.org/10.7846/jkosmee.2020.23.3.148