• Title/Summary/Keyword: Distributed Force

Search Result 486, Processing Time 0.031 seconds

The Influence of Moving Masses on Dynamic Behavior of a Cantilever Pipe Subuected to Uniformly Distributed Follower Forces (이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Hyun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.80-85
    • /
    • 2002
  • A conveying fluid cantilever pipe system subjected to an uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses. and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical mettled. The uniformly distributed tangential follower force is considered within its ciritical value of a cantilever pipe without moving masses, and three constant velocities and three constant distance between two moving masses are also chosen. When the moving masses exist on pipe, As the velocity of the moving mass and distributed tangental force increases, the deflection of cantilever pipe conveying fluid is decreased, respectively. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip displacement of pipe is influenced by the potential energy of cantilever pipe.

  • PDF

Influence of Moving Masses on Dynamic Behavior of Cantilever Pipe Subjected to Uniformly Distributed Tangential Follower Forces (이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향)

  • 윤한익;김봉균;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.430-437
    • /
    • 2003
  • A conveying fluid cantilever pipe subjected to a uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses, and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a cantilever pipe without moving masses, and three constant velocities and three constant distances between two moving masses are also chosen. When the moving masses exist on pipe, as the velocity of the moving mass and the distributed tangential follower force Increases. the deflection of cantilever pipe conveying fluid is decreased, respectively Increasing of the velocity of fluid flow makes the amplitude of a cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip- displacement of a pipe is influenced by the coupling effect between interval and velocity of moving mass and the potential energy change of a cantilever pipe. Increasing of the moving mass make the frequency of the cantilever pipe conveying fluid decrease.

Influence of a the Velocity of Moving Mass on Dynamic Behavior of Simple Beam Subjected to Uniformly Distributed Follower Forces (이동질량의 속도가 등분포종동력을 받는 단순보의 동특성에 미치는 영향)

  • Yoon, H.I.;Im, S.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.65-69
    • /
    • 2000
  • On the dynamic behavior of a simple beam subjected to an uniformly distributed tangential follower force, the influences of the velocities and magnitudes of a moving mass have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving mass represented by the time functions. The uniformly distributed tangential follower force is considered within its critical value of a simple beam, and four values of velocity is also chosen. Their coupling effects on the deflections of a simple beam are inspected too. When a moving mass moves after middle zone of a simple beam at the low velocities, its deflection is increased by the coupling of an uniformly distributed tangential follower force and moving mass.

  • PDF

Dynamic Stability of a Drum-brake Shoe Under a Pulsating Frictional Force (주기적인 마찰력을 받는 드럼-브레이크 슈의 동적안정성)

  • 류봉조;오부진;임경빈;김효준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.890-896
    • /
    • 2002
  • This paper deals with the dynamic stability of a brake shoe under pulsating frictional forces. A lining part of brake systems is assumed as a distributed spring, and the supported elements of a shoe are assumed as translational springs for a constant distributed frictional force and a pulsating frictional force. Governing equations are derived by the use of the extended Hamilton's principle, and numerical results are calculated by finite element method. The critical distributed frictional force and instability regions were investigated for the change of distributed spring constants and translational spring constants.

Effect of an Intermediate Support on the Stability of Elastic Material Subjected to Dry Friction Force (건성마찰력을 받는 탄성재료의 안정성에 미치는 중간 지지의 효과)

  • 류시웅;장탁순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.129-135
    • /
    • 2004
  • This paper discussed on the effect of an intermediate support on the stability of elastic material subjected to dry friction force. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The elastic material on the friction material is modeled for simplicity into an elastic beam on Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distributed follower force is formulated by using finite element method to have a standard eigenvalue problem. The first two eigen-frequencies are obtained to investigate the dynamics of the beam. The eigen-frequencies yield the stability bound and the corresponding unstable mode. The considered beams lose its stability by flutter or divergence, depending on the location of intermediate support.

The Effect of an Internal Damping on the Stability of Machine Tool Engineers Subjected to Dry Friction Force (내부감쇠가 건성마찰력을 받는 공작기계의 안정성에 미치는 효과)

  • 고준빈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper discussed on the effect of an internal damping on the stability of an elastic material subjected to dry friction force. Dry friction forces act tangentially at the contact surface between a moving belt and elastic material. The elastic material on a belt moving is modeled for simplicity into a cantilevered beam subjected to distributed follower force. In the analysis, the discretized equations derived according to finite element method are used. The impulse response of the beam are studied by the mode superposition method to observe the growth rate of the motion. It is found that the internal damping in cantilevered beam subjected to distributed follower force may act destabilizing.

Dynamic Stability of a Drum Brake Shoe under a Frictional Force (마찰력을 받는 드럼 브레이크-슈의 동적안정성)

  • ;;Yoshihiko Sugiyama
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.216-222
    • /
    • 2001
  • The paper presents the dynamic stability of a flexible shoe in drum brake systems subjected to a frictional force. The frictional force between the drum and the shoe is assumed as a distributed frictional force, while the shute is modeled as an elastic beam supported by two translational springs at both ends and elastic foundations. Governing equations of motion are derived by energy expressions, and their numerical results are obtained by employing the finite element method. The critical distributed frictional force and the instability regions are demonstrated by changing the stiffness of two translational springs and elastic foundation parameters. It is also shown that the beam loses its stability by flutter and divergence depending on the stiffness of elastic supports and elastic foundation parameters. Time responses of beams corresponding to their instability types are also demonstrated.

  • PDF

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF

Influence of Successive Two Moving Spring-Mass Systems on Dynamic Behavior of a Simple Beam Subjected to Uniformly Distributed Follower Forces (연속이동 스프링-질량계가 등분포종동력을 받는 단순보의 동특성에 미치는 영향)

  • 유진석;윤한익;강혁준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-88
    • /
    • 2002
  • A simple beam subjected to a uniformly distributed tangential follower force and the successive two moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between the successive two moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simple beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simple beam without the successive two moving spring-mass systems, and three kinds of constant velocities and constant distance of the successive two moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simple beam are inspected too.

  • PDF

PID-Force Control of a Artificial Finger with Distributed Force Sensor and Piezoelectric Actuator (분포센서를 가진 인공지의 PID-힘 제어)

  • Lee, Jae-Jung;Hong, Dong-Pyo;Chung, Tae-Jin;Chonan, Seiji;Chong, Kil-To;No, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.94-103
    • /
    • 1996
  • This paper is concerned with the theroretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is uniform flexible cantilever beam equipped with a distributed set of compact grasping force secnsors. Control action is applied by a qiexoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro-mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem which the finger is commanded to grasp an object The PID-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment.

  • PDF