• Title/Summary/Keyword: Distance equation

Search Result 691, Processing Time 0.033 seconds

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

ON A FUNCTIONAL EQUATION ASSOCIATED WITH STOCHASTIC DISTANCE MEASURES

  • Sahoo, P.K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.287-303
    • /
    • 1999
  • The general solution of the functional equation f1(pr, qs) + f2(ps, qr) = g(p,q) + h(r,s) for p, q, r, s $\in$] 0, 1[will be investigated without any regularity assumptions on the unknown functions f1, f2, g, h:]0.1[->R.

  • PDF

The Real-Time Distance Relay Algorithm Using fault Location Estimation Information for Parallel Transmission Line (병행 2회선 송전선로에서 고장점 위치 추정정보를 이용한 실시간 거리계전 알고리즘)

  • 이재규;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.183-192
    • /
    • 2003
  • This paper presents the real-time implemented distance relay algorithm which the fault distance is estimated with only local terminal information. When a single-phase-to-earth fault on a two-parallel transmission line occurs, the reach accuracy of distance relay is considerably affected by the unknown variables which are fault resistance, fault current at the fault point and zero- sequence current of sound line The zero-sequence current of sound line is estimated by using the zero sequence voltage which is measured by relaying location Also. the fault resistance is removed at the Process of numerical formula expansion. Lastly, the fault current through a fault point is expressed as a function of the zero-sequence current of fault line, zero-sequence current of sound line, and line, and fault distance. Therefore, the fault phase voltage can be expressed as the quadratic equation of the fault distance. The solution of this Quadratic equation is obtained by using a coefficient of the modified quadratic equation instead of using the square root solution method. After tile accurate fault distance is estimated. the mote accurate impedance is measured by using such an information.

Efficient Hausdorff Distance Computation for Planar Curves (평면곡선에 대한 Hausdorff 거리 계산의 가속화 기법에 대한 연구)

  • Kim, Yong-Joon;Oh, Young-Taek;Kim, Myung-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.115-123
    • /
    • 2010
  • We present an efficient algorithm for computing the Hausdorff distance between two planar curves. The algorithm is based on an efficient trimming technique that eliminates the curve domains that make no contribution to the final Hausdorff distance. The input curves are first approximated with biarcs within a given error bound in a pre-processing step. Using the biarc approximation, the distance map of an input curve is then approximated and stored into the graphics hardware depth-buffer by rendering the distance maps (represented as circular cones) of the biarcs. We repeat the same procedure for the other input curve. By sampling points on each input curve and reading the distance from the other curve (stored in the hardware depth-buffer), we can easily estimate a lower bound of the Hausdorff distance. Based on the lower bound, the algorithm eliminates redundant curve segments where the exact Hausdorff distance can never be obtained. Finally, we employ a multivariate equation solver to compute the Hausdorff distance efficiently using the remaining curve segments only.

Lp ESTIMATES WITH WEIGHTS FOR THE (equation omitted)-EQUATION ON REAL ELLIPSOIDS IN Cn

  • Ahn, Heung-Ju
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.263-280
    • /
    • 2003
  • We prove weighted L$^{p}$ estimates with respect to the non-isotropic norm for the (equation omitted)-equation on real ellipsoids, where weights are powers of the distance to the boundary. The non-isotropic norm is smaller than the usual norm, by a factor which is equal to the distance to the boundary in the complex tangential component and which is equal to the m-th root of the distance to the boundary in the complex normal component. Here n is the maximal order of contact of the boundary of the real ellipsoid with complex analytic curves.

DETERMINATION OF TRANSIENT WEAR DISTANCE IN THE ADHESIVE WEAR OF A6061 ALUMINIUM ALLOY REINFORCED WITH ALUMINA PARTICLES

  • Yang, L.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.217-218
    • /
    • 2002
  • An integrated adhesive wear model was proposed to determine the transient wear and steady-state wear of aluminium alloy matrix composites. The transient wear volume was described by an exponential equation, while the steady-state wear was governed by a revised Archard equation, in which both the transient wear volume and transient sliding distance were excluded. A mathematical method was developed to determine both the transient distance and the net steady-state wear coefficient. Experimental wear tests were carried out on three types of commercial A6061 aluminum alloy matrix composites reinforced with 10%, 15% and 20% alumina particles. More accurate wear coefficient values were obtained with the proposed model. The average standard wear coefficient, as determined by the original Archard equation, was found to be about 51% higher.

  • PDF

Optimal Solution of integral Coefficients in Distance Relaying Algorithm for T/L Protection considering Frequency Characteristics (주파수 특성을 고려한 송전선 보호용 적분근사거리계전 알고리즘의 최적 적분 계수 결정)

  • Cho, Kyung-Rae;Hong, Jun-Hee;Jung, Byung-Tae;Cho, Jung-Hyun;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.42-44
    • /
    • 1994
  • This paper presents the method of estimating integral coefficients of new distance relaying algorithm for transmission line protection. The proposed method is based on the differential equation calculates impedance value by approximation of integral term of integro-differential equation which relate voltage with current. As a result, we can determine the integral coefficients in least square error sense in frequency domain and we take into consideration the analog filter characteristics and frequency domain characteristics of the system to be protected. The simulation results showed that these coefficients can be successfully used to obtain impedance value in distance relay.

  • PDF

A study on the prediction method of the real fault distance using probability to the relay data of transmission line fault location (송전선로 거리표정치에 대한 실 고장거리의 확률적 예측방안)

  • Lee, Y.H.;Back, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.10-11
    • /
    • 2006
  • The fault location is obtained from the distance relay that detects the fault of the transmission line. In this time, transmission line crews track down the fault location and the reasons. However, because of having error at the fault location of the distance relay, there is a discordance between real and obtained fault location. As this reason, the inspection time for finding fault location can be longer. In this paper, we proposed the statistical (regression) analysis method based on each type of relay's the historical fault location data and the real fault distance data to improve the problems. With finding the regression equation based on the regression analysis, and putting the relay fault location into that equation, the real fault distance is calculated. As a result of the Prediction fault location, the inspection time of transmission line can be reduced.

  • PDF

A New fault Location Algorithm for 765㎸ Untransposed Parallel Transmission Lines (765㎸ 비연가 송전선로에서 고장점 표정 알고리즘)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • This paper describes a new fault location algorithm based on the voltage equation at the relaying point using 6-phase current for untransposed 765㎸ parallel transmission lines. The proposed method uses the voltage and current collected at only the local end. By means of 3-phase circuit analysis theory to compensate the mutual coupling effects between parallel lines, the fault location is derived. The fault distance is determined by solving the 2nd distance equation based on KVL(Kirchhoff's Voltage Law). Extensive simulation results using EMTP(Electromagnatic Transients Program) have verified that the error of the fault location achieved is up to 4.56(%) in untransposed parallel transmission lines.