• 제목/요약/키워드: Displacement Constraint

검색결과 134건 처리시간 0.028초

탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석 (Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed)

  • 이기수
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

특징점이 Field of View를 벗어나지 않는 새로운 Visual Servoing 기법 (A Novel Visual Servoing Approach For Keeping Feature Points Within The Field-of-View)

  • 박도환;염준형;박노용;하인중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.322-324
    • /
    • 2007
  • In this paper, an eye-in-hand visual servoing strategy for keeping feature points within the FOV(field-of-view) is proposed. We first specify the FOV constraint which must be satisfied to keep the feature points within the FOV. It is expressed as the inequality relationship between (i) the LOS(jine-of-sight) angles of the center of the feature points from the optical axis of the camera and (ii) the distance between the object and the camera. We then design a nonlinear feedback controller which decouples linearly the translational and rotational control loops. Finally, we show that appropriate choice of the controller gains assures to satisfy the FOV constraint. The main advantage of our approach over the previous ones is that the trajectory of the camera is smooth and circular-like. Furthermore, ours can be applied to the large camera displacement problem.

  • PDF

DADS 및 MSC/NASTRAN을 이용한 다물체계 유연물체의 동역학 해석

  • 김창부;백윤기
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.63-71
    • /
    • 2001
  • This paper introduces a method for calculation of dynamic stress occurring in flexible bodies of a moving multibody system by using commercial softwares DADS for dynamic analysis and MSC/NASTRAN for finite element analysis. Three methods for model transient response analysis of a flexible body are summarized. Elastic deformation of a flexible body can be described with normal modes and static modes composed of constraint modes and residual attachment modes. The deformation modes divided into fixed-interface modes and free-interface modes can be determined by using MSC/NASTRAN and selected for dynamic analysis. The dynamic results obtained from DADS are utilized to calculate dynamic stress by using mode-displacement method or mode-acceleration method of MSC/NASTRAN. As a numerical example of the analysis, we used a three dimensional slider-crank model with a flexible connecting rod.

  • PDF

규격부재로 이루어진 대형 철골구조물의 최적설계를 위한 알고리즘 (An Optimal Design Algorithm for The Large-Scale Structures with Discrete Steel Sections)

  • 이환우;최창근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 1990
  • An optimization method has been developed to find the minimum weight design of steel building structures which consist of the commercially available discrete sections. In this study, an emphasis was particularly placed on the practical applicability of optimization algorithm in engineering practice. The structure Is optimized through element optimization under the element level constraints first and then, if there is any violation of structural level constraints, it is adequately compensated by the constraint error correction vector obtained through the sensitivity analysis. A scaling procedure is introduced for the problems of large violated displacement constraint. The oscillation control in the objective function is also discussed. By dividing the available H-sections into two groups based on their section characteristics, much improved relationships between section variables were obtained and used efficiently in searching the optimum section in the section table.

  • PDF

탄성 조인트를 포함한 맥퍼슨 현가기구의 특성연구 (The Characteristic Study of McPherson Suspension Mechanism with Elastic Joints)

  • 강희용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.304-309
    • /
    • 1997
  • Elastic elements, at first, were extensively used in suspensions as vibration isolators at joints. Nowadays they are used to improve stability and handling. The design of these elements has become a very important matter since the loading condition of the mechanism gives a mew suspension geometry without any modification. This paper presents an analysis of forces and moments of joints with elastic elements in the McPherson suspension mechanism to evaluate accurately the elastic deformation using the displacement matrix method in conjunction with the equilibrium equations. First the suspension is modeled as a multi-loop spatial rigid-body guidance mechanism which has elastic elements at the hardpoints of the suspension. Then a method and design euqations are developed to analyze the suspension characteristics by the various tire load. Also the displacement matrices and constraint equations for links are appllied to determine the sensitivity of the suspension mechanism. Finally this approach may conduct a realistic design of suspension mechanisms with elastic elements to improve the performance of the automobile under various driving conditions.

  • PDF

드롭퍼 위치를 고려한 고속전철 전력선과 급전기의 접촉 분리 해석 (Analysis of Contact and Separation between the Catenary and the Pantograph of a High-speed Electrical Train Considering the Dropper Positions)

  • 이기수
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.427-436
    • /
    • 2007
  • The catenary of a high-speed electrical train is modeled by the finite elements with the upper suspension wire, lower contact wire, and droppers, and the dynamic contact between the catenary and the pantograph is numerically analyzed by solving the whole equations of motion of the pantograph and the catenary system subjected to the contact condition. For the stability of the numerical solution, with the cubic spline interpolation of the catenary displacement, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the various numerical examples, it is shown that the dropper positions as well as the static deflection are crucial to determine the contact and separation of the pantograph of a high-speed train.

알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계 (The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle)

  • 김정호;김범진;허승진;김민수
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.

스테레오 연속 영상을 이용한 구조 복원의 정제 (A New Refinement Method for Structure from Stereo Motion)

  • 박성기;권인소
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.935-940
    • /
    • 2002
  • For robot navigation and visual reconstruction, structure from motion (SFM) is an active issue in computer vision community and its properties arc also becoming well understood. In this paper, when using stereo image sequence and direct method as a tool for SFM, we present a new method for overcoming bas-relief ambiguity. We first show that the direct methods, based on optical flow constraint equation, are also intrinsically exposed to such ambiguity although they introduce robust methods. Therefore, regarding the motion and depth estimation by the robust and direct method as approximated ones. we suggest a method that refines both stereo displacement and motion displacement with sub-pixel accuracy, which is the central process f3r improving its ambiguity. Experiments with real image sequences have been executed and we show that the proposed algorithm has improved the estimation accuracy.

EFFICIENT COMPUTATION OF THE ACCELERATION OF THE CONTACT POINT BETWEEN ROTATING SURFACES AND APPLICATION TO CAM-FOLLOWER MECHANISM

  • LEE K.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.115-120
    • /
    • 2006
  • On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the acceleration constraint between the contact surfaces in muitibody dynamics is not coupled with the parameters such as the relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point computed by the present technique is compared with that computed by differentiating the displacement interpolated with a large number of nodal points.

고속 전철 급전기의 접촉 분리를 고려한 동역학적 해석 (Dynamic Analysis of the Pantograph of a High-speed Electrical Train Considering Contact and Separation)

  • 이기수
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.634-642
    • /
    • 2006
  • For the analysis of dynamic contact between a catenary and a pantograph of high-speed electrical train, the numerical solution of the equations of motion of the vehicle pantograph and the catenary system subjected to the contact condition is obtained. The whole equations of motion of the catenary and the pantograph are simultaneously time integrated with the strict application of the contact condition. For the stability of the numerical solution, with the cubic spline interpolation of the catenary displacement, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Especially it is shown that the Coriolis and centripetal accelerations are critical for the accuracy and stability of the computation.