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ABSTRACT-On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between
the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point
between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the
acceleration constraint between the contact surfaces in multibody dynamics is not coupled with the parameters such as the
relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific
instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not
be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point
computed by the present technique is compared with that computed by differentiating the displacement interpolated with

a large number of nodal points.
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1. INTRODUCTION

In the automobile engineering the kinematic analysis
and dynamic analysis of the mechanism composed of
multibodies are very important. The constraints between
the bodies are frequently imposed by the contact
conditions. When the contact surface deforms elastically,
the spring constant may be efficiently computed with
only the local deformation, and the contact condition
may be rather easily applied without considering the
acceleration constraint (e.g., Shin er al., 1998) But, for
the problems having the contact constraint between the
rigid bodies, the acceleration of the contact point as well
as the displacement and velocity of the contact point are
very important for the accurate analysis because the
solution without the proper acceleration constraints of the
contact points may accompany the severe spurious
oscillations (e.g., see the numerical solutions of Cardona
and Geradin, 1993). Moreover the acceleration analysis
of the contact point has many applications in the
kinematics of multibodies because the acceleration of any
component having contact constraints can be simply
computed with the acceleration of the contact point. Thus
the various techniques to compute the acceleration of the
contact point existing between the rigid bodies have been
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shown in the literature. For example, in the kinematic
analysis of the mechanisms such as cam-follower, the
acceleration of the follower which is equivalent to that
of the contact point has usually been computed by
differentiating the displacement interpolated with the
spline functions (Yoon, 1993; Tsay and Huey, 1993;
Yan et al., 1996). In such techniques using the spline
interpolations, even to compute the acceleration at a
specific cam angle, the whole displacement of a full cycle
should be interpolated with the spline function. Thus the
computation may become inconvenient and uneconomical.
Moreover, as the differentiation in a digital computer
may accompany a large amount of error, the accuracy of
the computed acceleration should be inferior to that of the
displacement. In case of dynamic analysis of multibodies
including the contact constraint between the rotating rigid
surfaces, even though the acceleration of the contact
point can be computed with the acceleration constraints
(e.g. Haug, 1989; Deo and Walker, 1995), it is usually
very complex because the acceleration constraints are
obtained by differentiating the velocity constraints and
because such accelerations are nonlinearly coupled with
the other unknown variables such as relative velocity and
the unknown parameters for detecting the contact points.
Thus the well-developed numerical techniques of muitibody
dynamics (e.g., Yoo ef al., 2001) generally require more
considerations if the contact constraints are involved.
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In this work it is explained that, by using the strategies
used for the dynamic contact analysis of gears by the
author (Lee, 2001), the acceleration of the contact point
sliding between the rotating surfaces of general shapes
can be simply and explicitly computed in any kind of the
multibody mechanism. In this work the relative velocity
of the contact point sliding between the rotating surfaces
is explicitly computed with the basic geometries of the
rotating surfaces, and then the acceleration of the contact
point between the contact surfaces is directly computed
by using the given value of the relative velocity of
the contact point. Thus, in the model of the multibody
dynamics, the constraint equation for computing the
acceleration of the contact point becomes simple because
the relative velocities of the contact points are decoupled
from the constraint equation to compute the acceleration
of the contact points. In the multibody dynamics where
the constraints should be simultaneously imposed on the
equations of motion of the whole dynamic system, the
above acceleration constraint may be efficiently imposed
to the global equation of motion by the augmented
Lagrange multiplier technique (e.g., see Lee, 2001). Also,
in the kinematic analysis of various mechanisms, the
present technique to compute acceleration of the contact
point can be conveniently applied because the interpolation
of the displacement of a full rotation is not required to
compute the acceleration of a component. For example,
the acceleration of the follower in a cam-follower
mechanism may be simply obtained by the acceleration
of the contact point computed in this work. In the
following sections the procedure for computing the
acceleration of a contact point sliding between the
rotating bodies is explained, and an example problem is
solved with a cam-follower model to check the accuracy
of the present solution.

2. EXPLICIT EQUATION FOR THE
ACCELERATION OF THE CONTACT POINT

In this work the contact between the two-dimensional
rigid bodies is assumed and friction is not considered.
The motions of the contact surfaces generally involve
rigid body rotations as shown in Figure 1, and thus the
contact point on each body slides on the surface. When
surfaces 4 and B are constrained so that contact is
maintained during the analysis, the contact point C* on
surface 4 and the contact point C° on surface B are
determined at any instant by computing the nearest
pairing points between the two surfaces. The velocity
constraint between the bodies that the normal velocity of
point C* should be equal to that of point C* may be easily
applied with the basic velocity variables of bodies 4 and
B (this is simple because the normal velocity of the
contact point sliding on the curve is independent from the

g ge

Figure 1. Contact pairing points C* and C?, tangential and
normal coordinates (&', n") and (€%, n®), and contact
pairing points C* and C” after time &¢.

tangential sliding velocity, and the formulas for the
complex objectives may be found in the references (e.g.,
Chen and Zribi, 2000; Kerr, 1984). However, the
acceleration constraint that the normal acceleration on
contact point C* should be equal to that of contact point
C® requires further consideration with additional
parameters because the contact points generally slide on
the rotating surfaces and the normal accelerations are
influenced by such tangential velocities.

In this work a contact point means a point sliding on
the surface, and thus a contact point is not fixed to the
surface of a body (this definition of the contact point is
different from that used in most of the references of the
kinematics where the sliding motion of the contact point
on the rotating surface is not considered (e.g., Shigley
and Uicker, 1995)). When observed from the fixed inertia
frame, the position of the contact point sliding on surface
A should always coincide with that of the contact point
sliding on surface B. Thus the absolute velocity and
acceleration of the contact point on surface 4 should
always coincide with those of the contact point on surface
B because the both contact points move simultaneously
on the common locus observed from the inertia frame.
Let (&, n") and (E%, n®) coordinates of Figure 1 be fixed
to the rotating bodies 4 and B, and assume that the axes
of these coordinates instantly agree with the common
tangential and normal directions of the contact surfaces
on the contact pairing points C* and CP. Here o is the
parameter which uniquely represents the position of any
point on the surface 4, and 3 is the parameter which also
uniquely represents the position of any point of the
surface B (any convenient angle or length may be employed
for parameters o and P as long as every point on the
surface can be uniquely represented). Then, as the contact
points slide relatively on the surfaces, the absolute
normal accelerations a* and a* on contact points C*' and
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C? shown in Figure 1 méy be written as

a* = a'+ 20850+ Ln'(a) (M

a" = a-20"2' )+ Ln'(p) @
where " and @° are the normal accelerations of the
points C* and C” fixed to the surfaces, o' denotes the
counterclockwise angular velocity of surface 4, ©®
denotes the clockwise angular velocity of surface B, and t
denotes the time. In equations (1) and (2), the second
terms on the right hand sides represent the Coriolis
accelerations, and the third terms represent the centripetal
accelerations explained in the dynamics text book (e.g.,
Meriam and Kraige, 2002). These relative accelerations
are required for computing the absolute accelerations
because the contact points of this work slide relatively on
the contact surfaces. In Figure 1, points C* and C* are
assumed to be the contact pairing points after time ¢, and
the coordinates of the surfaces 4 and B are assumed to be
expressed by using parameters o and B. Then, as the
normal directions of the two surfaces on the contact
pairing points C* and C” should coincide after time 8¢,
the following relation is obtained:

g Joovorsi =[G Jop-o'sr @

In the left hand side of equation (3), the first term denotes
the normal direction change of the surface on the contact
point due to the geometric curve of the surface 4 by the
movement do of the contact point along the surface 4,
and the second term denotes the normal direction change
due to the rigid-body-rotation of surface 4 after time 6z.
In the right hand side of equation (3), the first and
the second terms also denote the corresponding normal
direction changes on the contact point of surface B with
the movement of 6f after time &¢. Also, as the tangential
velocities of contact points C* and C” should be identical
after time 6¢, the following relation holds:

de"\d deNd
RG-SR @

where v' and +* denote the tangential velocities of the
points fixed to the surfaces on points C* and C°. In the
above equation, the second term on the left hand side
represents the relative tangential velocity of the contact
point along surface 4, and the second term on the right
hand side represents the relative tangential velocity of the
contact point along surface B (here, the author would like
to emphasize again that the contact point of this work is
not the point fixed to the surface but the point sliding on
the surface, and the absolute velocity and the acceleration
of the contact point sliding on the surface are measured
on the fixed coordinate system). Solving equations (3)

and (4) simultaneously, dov/df and dp/dt are obtained as

A BdB B
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da\gs'/ dp dB de’
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At the contact points the following relations are derived
by the chain rule of differentiation:

g’ _ dady
dt  dt da (M
& iy = dfdadn’) _ (da)'dn’
2 (@) dt(dt do. (dt) o ®)
e’ _ dpde’ )
dt — dit dp
_ d(dBdn" _ (dB)'d'n’
( B = dt(dt dp (dt) ap’ (10)

The absolute normal acceleration @' on contact point C*
may be computed by equations (1), (5), (7), (8), and the
absolute normal acceleration a” on contact point C* may
also be computed by equations (2), (6), (9), (10). As the
relative velocities do/dt and dp/dt of the contact points
are computed by only equations (5) and (6) independently
from the accelerations, the normal accelerations a” and o®
of the contact points may be easily computed by equations
(1) and (2) with the given values of do/dr and dp/dt.
When the contact is maintained, as the absolute normal
accelerations of the both contact points observed from the
inertia frame should coincide, the following acceleration
constraint should be satisfied:

a=da (11)

Thus, with the relative velocities do/dt and dp/dt of the
contact points computed easily by equations (5) and (6),
the acceleration constraint of the two contacting bodies can
be simply imposed in multibody dynamics and kinematics
(this is compared with the acceleration constraints of the
other techniques in the literature where the relative
velocities and accelerations of the contact points should
be simultaneously solved with the other unknown variables
in the acceleration constraint equations).

3. NUMERICAL EXAMPLES

To compare the accuracy and efficiency of the present
technique, a cam-follower mechanism shown in Figure 2
is employed here, and the acceleration computed by the
present technique is compared with that computed from
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Figure 2. Cam-follower model (unit: cm).

the differentiation of the interpolated displacement (it is
worth to note that the acceleration of the follower has
been usually computed from the interpolated displacement
as shown in the references (e.g., Yoon, 1993; Tsay and
Huey, 1993; Yan et al., 1996)). For this purpose the
normal acceleration of the contact point on the rotating
cam surface is computed by the present technique, and
the acceleration of the follower moving on a straight is
computed from the differentiation of the interpolated
displacement here. The cam contour is expressed by
using the cubic spline interpolations with the nine points
as shown in Figure 2, and the cam rotates with the speed
of 1000 rpm.

With the given cam profile, by computing the right-
extreme point of the cam at each instant, the displacement
of the follower is easily interpolated as shown in Figure
3. Here the cubic spline interpolation (e.g., Atkinson, 1989;
Burden and Faires, 1993) was used for expressing the
follower displacement, and the two additional parameters
generally required for the cubic spline interpolations besides
the nodal displacement are not used here because the end
point coincides . with the start point in a cyclic motion.
After expressing the follower displacement of Figure 3
by cubic spline interpolations with the 1000 nodal points
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Figure 3. Displacement of the follower.
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Figure 4. Accelerations of the contact point computed by
the present technique and computed by differentiating the
displacement interpolated with 1000 points.

(i.e., using the follower displacement computed at each
cam rotation of 0.36°), the acceleration of the follower is
computed by differentiating the displacement twice and
is shown in Figure 4. As the contact point on the follower
always shares the same position with the contact point
sliding on the cam surface, the absolute accelerations of
the both contact points measured from the inertia frame
should always coincide. Thus the follower acceleration
may be computed by computing the normal acceleration
of the contact point sliding on the cam surface. Here the
normal acceleration of the contact point sliding on the
cam surface is computed by the presented technique of
this work and is also shown in Figuee 4. As compared in
Figure 4, the acceleration of the contact point computed
from the differentiation of the displacement interpolated
with 1000 nodal points almost agrees with that computed
by the present technique.

On the other hand, the acceleration computed from the
differentiation of the interpolated displacement should be
subjected to the numerical error due to the interpolation,
and the error generally increases as the number of the
nodal points for the interpolation reduces. For example,
as shown in Figure 5, when the number of the nodal
points of the displacement interpolation changes from
1000 to 100, the relative error in computing the
acceleration by the interpolated displacement increases
drastically (here, the relative error is defined as the ratio
of the computed error to the maximum value of the
acceleration in a full cycle). Of course the error in
computing the acceleration of the contact point further
reduces as the number of nodal points for the
displacement interpolation increases. For example, when
the error is defined as the difference between the
acceleration computed by the present technique and that
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Figure 5. Comparison of the relative errors of the
accelerations computed with the different number of
nodal points for the displacement interpolations of the
follower in a full cam-rotation.

by the interpolation technique, the maximum relative
error of the acceleration reduces to 0.05% if 10,000 nodal
points are used for the displacement of a cycle (thus, it
may be stated that the acceleration of the contact point
computed from the interpolated displacement converges
to a simple solution of the present technique if the
displacement is interpolated with a number of nodal
points).

However, when the cam profile changes more sharply,
the computation error in the acceleration obtained by
differentiating the interpolated displacement also increases
sharply even if the displacement is interpolated with a
large number of the nodal points. For example, when

210°

SRR AL AL RS AR
— + -
2 :
&

£ 1.540° [ ]
o 1. n cubic spline interpolation q
= Ho present .
£ i ]
b~ 9 [ ]
g x10 i .
@ L ]
O L B
b 5x1o“] N
e I -
@ ]
z L_‘__\/\\’qh_j
° ol

=} L

w r ]

Hx10® Lol v a v v b b

0 50 100

150 200

250

300

350

Cam rotation angle (deg.)

Figure 6. Accelerations of the contact point computed by
the present technique and computed by differentiating the
displacement interpolated with 1000 points (revised cam
profile.
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Figure 7. Comparison of the relative errors of the
accelerations computed with the different number of
nodal points for the displacement interpolations of the
follower in a full cam-rotation (revised cam profile).

only the coordinates of the right-extreme nodal point of
the cam surface in Figure 2 are revised from (5, 0) to (4.2,
0}, the peak acceleration increases as shown in Figure 6.
Even though the both accelerations of Figure 6 computed
by the different techniques seem to almost coincide, as
shown in Figure 7 for a cam rotation angle between 5°
and 10°, the acceleration computed by differentiating the
interpolated displacement contains a relatively large amount
of the error even with 10,000 nodal points for the
displacement interpolation of a full cycle.

When the follower acceleration is computed by differ-
entiating the interpolated displacement, it generally requires
much more computing efforts than the present technique
because the whole displacement of the follower associated
with a full rotation of the cam should be precisely
expressed by a special interpolation function with a
number of nodal points. The accuracy of the acceleration
obtained by differentiating the displacement generally
depends on the interpolating technique and the number of
the nodal points employed for the displacement, and a
large amount of the computing efforts are required for
reducing the numerical error of the computed acceleration.
Most of all, in the practical engineering where only a part
of the cam profile frequently changes, even to compute
the acceleration only at a specific cam rotation angle due
to the design change, the whole displacement of a full
cycle should be precisely interpolated if the acceleration
should be computed from differentiating the interpolated
displacement. In contrast, in the present technique, the
acceleration of the follower at any specific cam rotation
angle can be precisely and simply computed by the
acceleration of the contact point sliding on the cam with
only the local geometry near the contact point.
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4. CONCLUSION

It is shown that, after computing the relative velocity of
the contact point sliding on the rotating surface with the
basic geometries of the pairing rotating bodies, the
acceleration of the contact point between the rigid bodies
can be directly computed without differentiating any
kind of the displacement constraint or the interpolated
displacement. The present technique for the acceleration
computation is simple and economical because the relative
velocity of the contact point is not coupled with the large
system of nonlinear equations in the acceleration constraint
and because the whole displacement of a full cycle need
not be interpolated. Thus the acceleration of a contact
point with good accuracy may be obtained by the present
technique without any dependence on the complexity of
the geometries of the contact surfaces. As demonstrated
in the numerical example of a cam-follower mechanism,
the acceleration of the contact point can be accurately and
easily computed by the present technique, and may be
applied to compute the accelerations of the components in
various mechanisms in the kinematic analysis.
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