• Title/Summary/Keyword: Discrete Function

Search Result 835, Processing Time 0.025 seconds

High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method (새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어)

  • Oh, Seung-Hyun;Kim, Jung-ho;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

CONSTRUCTIVE AND DISCRETE VERSIONS OF THE LYAPUNOV′S STABILITY THEOREM AND THE LASALLE′S INVARIANCE THEOREM

  • Lee, Jae-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.155-163
    • /
    • 2002
  • The purpose of this paper is to establish discrete versions of the well-known Lyapunov's stability theorem and LaSalle's invariance theorem for a non-autonomous discrete dynamical system. Our proofs for these theorems are constructive in the sense that they are made by explicitly building a Lyapunov function for the system. A comparison between non-autonomous discrete dynamical systems and continuous dynamical systems is conducted.

Development of a Multi-objective function Method Based on Pareto Optimal Point (Pareto 최적점 기반 다목적함수 기법 개발에 관한 연구)

  • Na, Seung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.175-182
    • /
    • 2005
  • It is necessary to develop an efficient optimization technique to optimize the engineering structures which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of engineering structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points by spreading point randomly entire the design spaces. In this paper, a Pareto optimal based multi-objective function method (PMOFM) is developed by considering the search direction based on Pareto optimal points, step size, convergence limit and random search generation . The PMOFM can also apply to the single objective function problems, and can consider the discrete design variables such as discrete plate thickness and discrete stiffener spaces. The design results are compared with existing Evolutionary Strategies (ES) method by performing the design of double bottom structures which have discrete plate thickness and discrete stiffener spaces.

NIPM -Based Optimal Power Flow Including Discrete Control Variables (이산 제어 변수를 포함한 비선형 내점법 기반 최적조류계산)

  • Rodel, D. Dosano;Song, Hwa-Chang;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.226-228
    • /
    • 2007
  • This paper proposes Nonlinear Interior Point Method (NIPM) including discrete control variables optimal power flow formulations. The algorithm utilizes the robustness in terms of starting point and fast convergence for large scale power system of NIPM and an introduction of rounding penalty function which is augmented in the Lagrangian function to handle discrete control variables. The derived formulation shows a simplified approach to deal with discrete control problems which is implementable in real large scale systems.

  • PDF

Asymptotic Stability of Discrete Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun;Kang, Chang-Ik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.580-585
    • /
    • 1999
  • This paper deals with the stability of discrete time linear systems with time varying delays in state. In this paper, the magnitude of time-varying delays is assumed to be upper-bouded. The stability of discrete time linear systems with time-varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

ASYMPTOTIC DISTRIBUTION OF THE DISCOUNTED PROPER DEFICIT IN THE DISCRETE TIME DELAYED RENEWAL MODEL

  • Bao, Zhen-Hua;Wang, Jing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.325-334
    • /
    • 2011
  • In this paper we consider the discrete time delayed renewal risk model. We investigate what will happen when the distribution function of the discounted proper deficit is asymptotic in the initial surplus. In doing this we establish several lemmas regarding some related ruin quantities in the discrete time delayed renewal risk model, which are of significance on their own right.

DISCRETE MULTIPLE HILBERT TYPE INEQUALITY WITH NON-HOMOGENEOUS KERNEL

  • Ban, Biserka Drascic;Pecaric, Josip;Peric, Ivan;Pogany, Tibor
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.537-546
    • /
    • 2010
  • Multiple discrete Hilbert type inequalities are established in the case of non-homogeneous kernel function by means of Laplace integral representation of associated Dirichlet series. Using newly derived integral expressions for the Mordell-Tornheim Zeta function a set of subsequent special cases, interesting by themselves, are obtained as corollaries of the main inequality.

An Application of k-domain Discrete Wavelet Transform for the Efficient Representation of Green Function (파수영역 이산 웨이블릿 변환을 이용한 효율적인 그린함수 표현에 관한 연구)

  • 주세훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1110-1114
    • /
    • 2001
  • The discrete wavelet concept in the k-domain is applied to efficiently represent Green function of integral equations. Application of discrete wavelet concept to Green function in the k-domain can be implemented equivalently by using spatial domain variable-sized windows. The proposed method consists of constant Q-filtering, changing the center of coordinates, and transforming spatially filtered Green functions into those in the k-domain. A mathematical expression of Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

  • PDF

A high reliable optical image encryption system which combined discrete chaos function with permutation algorithm (이산 카오스 함수와 Permutation Algorithm을 결합한 고신뢰도 광영상 암호시스템)

  • 박종호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.37-48
    • /
    • 1999
  • Current encryption methods have been applied to secure communication using discrete chaotic system whose output is a noise-like signal which differs from the conventional encryption methods that employ algebra and number theory[1-2] We propose an optical encryption method that transforms the primary pattern into the image pattern of discrete chaotic function first a primary pattern is encoded using permutation algorithm, In the proposed system we suggest the permutation algorithm using the output of key steam generator and its security level is analyzed. In this paper we worked out problem of the application about few discrete chaos function through a permutation algorithm and enhanced the security level. Experimental results with image signal demonstrate the proper of the implemented optical encryption system.