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ASYMPTOTIC DISTRIBUTION OF THE DISCOUNTED

PROPER DEFICIT IN THE DISCRETE TIME DELAYED

RENEWAL MODEL

Zhen-hua Bao and Jing Wang

Abstract. In this paper we consider the discrete time delayed renewal
risk model. We investigate what will happen when the distribution func-
tion of the discounted proper deficit is asymptotic in the initial surplus.

In doing this we establish several lemmas regarding some related ruin
quantities in the discrete time delayed renewal risk model, which are of
significance on their own right.

1. Introduction

We begin with the ordinary discrete time renewal risk model. The individual
claim amounts {Xi : i ∈ N+} are independent and identically distributed
(i.i.d.) positive random variables with common probability function (p.f.) f(x),
x ∈ N+ and distribution function (d.f.) F (x) = 1−F (x). The counting process
{N(n), n ∈ N} denotes the number of claims up to time n and is defined as
N(n) = max{k : W1 + W2 + · · · + Wk ≤ n}, where the interclaim times
{Wi : i ∈ N+} are i.i.d. positive random variables with common p.f. k(t),
t ∈ N+, the d.f. K(t) = 1−K(t), and the mean E(W2) < ∞. We assume that
{Xi : i ∈ N+} and {Wi : i ∈ N+} are mutually independent. The surplus of
the insurer at time n is then defined as

U(n) = u+ n−
N(n)∑
i=1

Xi, n = 1, 2, . . . ,

where u ∈ N is the initial surplus.
In the delayed renewal risk model, the number of claims process {N(n), n ∈

N} is assumed to be delayed renewal process, with W1 the time until the first
claim occurs, still independent of {W2,W3, . . .} and {Xi : i ∈ N+} but with
a (possibly) different p.f. k1(t). As a special case of the delayed model, the

stationary renewal risk model can be defined if the p.f. k1(t) =
K(t−1)
E(W2)

, t ∈ N+.
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Further, if k1(t) = k(t), then the delayed renewal risk model becomes the
ordinary renewal risk model.

Given the ordinary discrete time renewal model, Li [6] derives a recursive
formula for the discounted penalty function with claim waiting times having
a discrete Km distribution. In a subsequent paper of Li [7], the discounted
penalty function is explicitly expressed in terms of a compound geometric dis-
tribution function, and the explicit expressions for the probability generating
function (p.g.f.) of the time of ruin, the joint and marginal distributions of the
surplus before ruin, the deficit at ruin, the claim causing ruin, as well as their
moments are derived. Wu and Li [12] obtain a recursive formula satisfied by
the penalty function for the discrete renewal risk model with arbitrary inter-
claim times. Cossette et al. [2] consider a discrete time renewal risk model with
premium rate c ∈ N+. Under the framework of this extension, they investigate
the aggregate claim amount process and both finite-time and infinite-time ruin
probabilities. They also derive an upper bound and an asymptotic expression
for the infinite-time ruin probabilities. See also Cheng et al. [3] and Li and
Garrido [8] for related analysis.

In recent years, the delayed renewal model has drawn much attention of re-
searchers. Willmot [10] considers a class of continuous time delayed renewal risk
process with a special choice for k1(t), which generalizes both the equilibrium
density and the exponential density. Along the similar lines with Willmot [10],
Bao and Ye [1] study the delayed renewal risk model with random premium
income, the expected discounted penalty function in the delayed renewal model
is expressed in terms of the corresponding penalty function in the ordinary re-
newal model. Willmot and Lin [11, section 11] deal with the ruin probabilities
for the delayed and equilibrium renewal risk processes, among many others.

For the discrete time stationary risk model, Pavlova and Willmot [9] express
the expected discounted penalty function in terms of the corresponding penalty
function in the ordinary renewal risk model. The results for ruin probabilities
obtained in Cossette et al. [2] can also be easily generalized to the delayed
renewal risk model. There are no further results for the discrete time delayed
renewal risk model.

Comparing with the ultimate ruin probability, there are few literatures to
deal with the severity of ruin, which is an important quantity in risk theory.
The purpose of this paper is to study the discounted proper deficit for the
discrete time delayed renewal model in some detail. We will examine what will
happen when the d.f. of the proper deficit is asymptotic in the initial surplus u.
It is not straightforward to take the limit of u from the proper deficit defined
below. Therefore, we establish several lemmas to give the upper bounds and
asymptotic estimations for the p.g.f. of the ruin time in the ordinary and
delayed renewal risk model respectively, which allow for using the dominated
convergence theorem in the proof of the main result. As mentioned by Pavlova
and Willmot [9], there are some technical details which are somewhat different
in the discrete model. In what follows we can see that how the p.g.f. can be
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used to analyze the time of ruin and associated ruin quantities. The results
obtained will fill a gap in the scant literature on discrete time renewal risk
model.

The rest of this paper is organized as follows. In Section 2, we express the
expected discounted penalty function in the delayed renewal risk model in terms
of the corresponding discounted penalty function in the ordinary renewal risk
model and present the main result. Section 3 establishes some lemmas which
are of independent interest on their own right, and Section 4 gives the proof of
the main result.

2. Preliminaries and main result

For the delayed renewal risk model, let Td = min{n ∈ N+;U(n) < 0} be
the time of ruin with Td = ∞ if ruin does not occur. If ruin occurs, |U(Td)| is
the deficit at ruin and U(Td − 1) is the surplus immediately prior to ruin. For
v ∈ (0, 1], denote by

md
v(u) = E[vTdω(U(Td − 1), |U(Td)|)I(Td < ∞)|U(0) = u],

the Gerber-Shiu expected discounted penalty function, which is introduced by
Gerber and Shiu [4]. Where ω(x, y) : N ×N+ → N is a nonnegative penalty
function of the surplus prior to ruin and the deficit at ruin and I(·) is the
indicator function.

Consider fd
3 (i, j, t|u) = P{U(Td − 1) = i, |U(Td)| = j, Td = t|U(0) = u},

i ∈ N, j ∈ N+, the joint p.f. of the surplus just before ruin, deficit at ruin
and ruin time. And we define fd

2 (i, j|u) =
∑∞

t=1 v
tfd

3 (i, j, t|u) as the discounted
joint p.f. of U(Td − 1) and |U(Td)|.

Throughout the entire paper, unless otherwise stated, we use the same nota-
tions by omitting the argument d to denote the corresponding quantities in the
ordinary renewal model. For example, if T is the time of ruin in the ordinary
risk model, then the corresponding penalty function is denoted by

mv(u) = E[vTω(U(T − 1), |U(T )|)I(T < ∞)|U(0) = u].

Since the delayed renewal risk process behaves like the ordinary renewal risk
process upon the occurrence of the first claim, we obtain the following equation
by conditioning on the first drop in surplus below its initial level u

md
v(u) =

u∑
j=1

∞∑
i=0

∞∑
t=1

vtmv(u− j)fd
3 (i, j, t|0)

+
∞∑

j=u+1

∞∑
i=0

∞∑
t=1

vtω(i+ u, j − u)fd
3 (i, j, t|0)

=

u∑
j=1

mv(u− j)gdv(j) +

∞∑
j=u+1

∞∑
i=0

ω(i+ u, j − u)fd
2 (i, j|0), u ∈ N+,(1)
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with

md
v(0) =

∞∑
j=1

∞∑
i=0

ω(i, j)fd
2 (i, j|0),

where gdv(j) :=
∑∞

i=0 f
d
2 (i, j|0). The function gdv is a defective distribution

function and it plays a very important role in what follows. For notational

convenience, we denote Gd
v(x) =

∑∞
j=x+1 g

d
v(j).

By the equation (1), we can obtain a simple relationship between the dis-
counted defective survival distribution of the deficit ϕd

v(u, y) in the delayed
model and ϕv(u, y) in the ordinary renewal model as follows:

ϕd
v(u, y) := E[vTdI(|U(Td)| > y)I(Td < ∞)|U(0) = u]

=

u∑
j=1

ϕv(u− j, y)gdv(j) +Gd
v(u+ y), u ∈ N+, y ∈ N,(2)

with ϕd
v(0, y) = Gd

v(y).
Furthermore, with y = 0 in the equation (2) we get the p.g.f. of ruin time

Td with respect to discount factor v

ϕd
v(u) = ϕd

v(u, 0) := E[vTdI(Td < ∞)|U(0) = u]

=

u∑
j=1

ϕv(u− j)gdv(j) +Gd
v(u), u ∈ N+,(3)

with ϕd
v(0) = Gd

v(0).

For any p.f. l, we will use l̂(s) to denote the corresponding p.g.f. throughout
the entire paper. Now we consider the following generalized version of Lundberg
equation:

(4) k̂(v/s)f̂(s) = 1.

It is easy to see that the equation (4) has one root greater than 1. Hence
denote by ξv, which can be called a generalized adjustment coefficient as Li
[6]. Wu and Li [12] show that the generalized Lundberg equation (4) has the
same roots as the equation ĝv(s) = 1, where gv is a defective distribution in
the scenario of ordinary renewal model (corresponding to the function gdv).
Similarly, we also adopt the notation Gv(x) =

∑∞
j=x+1 gv(j) for convenience.

In what follows the discounted proper distribution function of the deficit,

conditioning on ruin occurring, is defined by Hd
v,u(y) = 1 − Hd

v,u(y) where

Hd
v,u(y) =

ϕd
v(u,y)
ϕd
v(u)

. In this short communication we will establish an asymptotic

result (as the initial surplus u → ∞) for Hd
v,u(y).
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Theorem 2.1. For y ∈ N, the asymptotic distribution of the discounted proper
deficit in the discrete time delayed renewal risk model is

lim
u→∞

Hd
v,u(y) =

ξv − 1

1− ϕv(0)

∞∑
i=0

ξivGv(i+ y).(5)

We remark that the asymptotic distribution of Hd
v,u(y) is independent of the

distribution of the first interclaim timeW1. This is because large u implies large
Td , and as the initial surplus u gets large, the effect of the assumed distribution
for the time until the first claim becomes insignificant. In fact, we will see that

the asymptotic result for Hd
v,u(y) is of the same form as in the ordinary discrete

time renewal risk model. Furthermore, note that in general (5) cannot be solved
analytically. However, if we assume the claim waiting times and claim amounts
follow some particular distributions, we can get analytical solutions for ξv and
gv, then explicit expression for (5) can be obtained. We illustrate this point in
the following example.

Example 2.1. We assume that the claim waiting times are shifted negative
binomial distributed with k(t) = t(1 − q)2qt, t ∈ N+ in the ordinary renewal
risk model. Claim amounts are geometrically distributed with f(x) = (1 −
α)αx−1, x ∈ N+, and f̂(s) = s(1− α)/(1− sα). Then equation

(s− vq)2(1− sα)− v(1− q)2s2(1− α) = 0

has two roots, say ρ1, ρ2 with |ρi| < 1, and one root ξv > 1. By the equation
(56) of Li [6] we know that

gv(y) =
1− ξvα

ξv
αy−1.

Therefore, the tail distribution of gv satisfies

Gv(u) =
1− ξvα

ξv(1− α)
αu.

On the other hand, by Theorem 6 of Li [7] we have

ϕv(u) =
1− ξvα

ξv(1− α)
ξ−u
v .

Substitution the expressions of Gv(u) and ϕv(0) into the right side of the equa-
tion (5) yields

lim
u→∞

Hd
v,u(y) = αy.

3. Some lemmas

In this section we will prepare several lemmas before giving the proof of
Theorem 2.1.
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Lemma 3.1. For u ∈ N, the p.g.f. of ruin time ϕv(u) in the ordinary discrete
time renewal risk model satisfies the following upper bound:

ϕv(u) ≤ ξv
−(u+1).(6)

Proof. For the ordinary renewal risk model, Li [6] shows that ϕv(u) satisfies
the following renewal equation (in an obvious notation)

(7) ϕv(u) =

u∑
j=1

ϕv(u− j)gv(j) +Gv(u), u ∈ N+.

It is easy to see from (7) that

(8) ϕ̂v(s) =
ϕv(0)− ĝv(s)

(1− s)(1− ĝv(s))
.

Equation (8) can be rewritten as

ϕ̂v(s) =
1− Pv(s)

1− s
,

where Pv(s) =
1−ϕv(0)
1−ĝv(s)

= 1−ϕv(0)
1−ϕv(0)Qv(s)

, Qv(s) =
1

ϕv(0)
ĝv(s). The inequality (6)

then follows by Lemma 7.2.1 of Willmot and Lin [11] directly. □

Lemma 3.2. For u ∈ N, the asymptotic estimation for the p.g.f. of ruin time
ϕv(u) in the ordinary discrete time renewal risk model is:

ϕv(u) ∼
1− ϕv(0)

(ξv − 1)
∑∞

i=1 iξ
i
vgv(i)

ξ−u
v .(9)

Proof. From the equation (36) of Li [6] we can obtain a defective renewal
equation for ϕv(u, y) as follows:

ϕv(u, y) =
u∑

j=1

ϕv(u− j, y)gv(j) +Gv(u+ y), u ∈ N+.(10)

Recall that ĝv(ξv) = 1. Then, multiplying (10) by ξuv yields a standard discrete
renewal equation. By the discrete renewal theory (Karlin and Taylor [5]) we
have

lim
u→∞

ξuvϕv(u, y) =

∑∞
i=0 ξ

i
vGv(i+ y)∑∞

i=1 iξ
i
vgv(i)

.(11)

Let y = 0 in (11) we get

lim
u→∞

ξuvϕv(u) =

∑∞
i=0 ξ

i
vGv(i)∑∞

i=1 iξ
i
vgv(i)

=
1− ϕv(0)

(ξv − 1)
∑∞

i=1 iξ
i
vgv(i)

.(12)

It is obvious that the equation (9) is equivalent to (12). □



ASYMPTOTIC DISTRIBUTION OF THE DISCOUNTED PROPER DEFICIT 331

Lemma 3.3. For u ∈ N, the p.g.f. of ruin time ϕd
v(u) in the delayed discrete

time renewal risk model satisfies the following upper bound:

ϕd
v(u) ≤

k̂1(
v
ξv
)

k̂( v
ξv
)
ξv

−(u+1).(13)

Proof. Conditioning on the time W1 and the amount X1 of the first claim, we
obtain

ϕd
v(u) =

∞∑
i=1

vi[

u+i∑
j=1

ϕv(u+ i− j)f(j) + F (u+ i)]k1(i).(14)

Note that

F (u+ i) ≤ ξ−(u+i+1)
v

∞∑
j=u+i+1

ξjvf(j),(15)

by (6), (14) and (15) we have

ϕd
v(u) ≤

∞∑
i=1

vi[

u+i∑
j=1

ξ−(u+i−j+1)
v f(j) + ξ−(u+i+1)

v

∞∑
j=u+i+1

ξjvf(j)]k1(i)

= ξ−(u+1)
v

∞∑
i=1

(
v

ξv
)i[

∞∑
j=1

ξjvf(j)]k1(i)

= ξ−(u+1)
v f̂(ξv)k̂1(

v

ξv
).(16)

Recall that ξv is the root of the generalized Lundberg equation (4), the inequal-
ity (13) follows by (16) immediately. □

Lemma 3.4. For u ∈ N, the following asymptotic result for the p.g.f. of ruin
time ϕd

v(u) in the delayed discrete time renewal risk model holds:

ϕd
v(u) ∼

k̂1(
v
ξv
)

k̂( v
ξv
)

1− ϕv(0)

(ξv − 1)
∑∞

i=1 iξ
i
vgv(i)

ξ−u
v .(17)

Proof. Note that the generalized Lundberg equation (4) implies f̂(ξv) < ∞.
Then the inequality ξivF (i) ≤

∑∞
j=i+1 ξ

j
vf(j) implies that

(18) lim
i→∞

ξivF (i) = 0.

On the other hand, for any i ≥ j, by Lemma 3.1 we have

ξi−j
v ϕv(i− j) ≤ 1

ξv
≤ 1,

then by (12), (18) and bounded convergence theorem we have

lim
i→∞

ξiv{
i∑

j=1

ϕv(i− j)f(j) + F (i)} =
∞∑
j=1

ξjvf(j) lim
i→∞

ξi−j
v ϕv(i− j)
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=
1

k̂( v
ξv
)

1− ϕv(0)

(ξv − 1)Σ∞
i=1iξ

i
vgv(i)

.(19)

By the equations (14), (19) and use the bounded convergence theorem again,
we obtain

lim
u→∞

ξuvϕ
d
v(u)

= lim
u→∞

∞∑
i=1

(
v

ξv
)ik1(i)ξ

u+i
v [

u+i∑
j=1

ϕv(u+ i− j)f(j) + F (u+ i)]

=
∞∑
i=1

(
v

ξv
)ik1(i) lim

u→∞
ξu+i
v [

u+i∑
j=1

ϕv(u+ i− j)f(j) + F (u+ i)]

=
k̂1(

v
ξv
)

k̂( v
ξv
)

1− ϕv(0)

(ξv − 1)
∑∞

i=1 iξ
i
vgv(i)

.(20)

The asymptotic relationship (17) follows from (20) directly. □

Lemma 3.5. For u ∈ N, the tail distribution Gd
v(u) in the delayed discrete

time renewal risk model satisfies:

Gd
v(u) =

ϕd
v(u)−

∑u
j=1 ϕ

d
v(u− j)gv(j)− ϕd

v(0)Gv(u)

1− ϕv(0)
.(21)

Proof. Multiplying both sides of the equation (3) by su and summing over u
from 1 to ∞ yields

(22) ϕ̂d
v(s) = ĝdv(s)ϕ̂v(s) +

ϕd
v(0)− ĝdv(s)

1− s
.

Substitute (8) into (22) and multiply by 1− ĝv(s) to get

(1− ĝv(s))ϕ̂d
v(s) =

ϕd
v(0) + ϕv(0)ĝdv(s)− ϕd

v(0)ĝv(s)− ĝdv(s)

1− s

= ϕd
v(0)

ϕv(0)− ĝv(s)

1− s
+ (1− ϕv(0))

ϕd
v(0)− ĝdv(s)

1− s
.(23)

From the equation (23) we get (21) by inverting the p.g.f. □

4. Proof of Theorem 2.1

Noting that ĝv(ξv) = 1, we have

(24) lim
u→∞

ξuvGv(u) = lim
u→∞

ξuv

∞∑
j=u+1

gv(j) ≤ lim
u→∞

∞∑
j=u+1

ξjvgv(j) = 0.
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Since Lemma 3.4 implies that limu→∞ ξuvϕ
d
v(u) is a constant, by (24) and

Lemma 3.5 we obtain

lim
u→∞

ξuvG
d
v(u) =

limu→∞ ξuvϕ
d
v(u)− limu→∞ ξuv

∑u
j=1 ϕ

d
v(u− j)gv(j)

1− ϕv(0)

=
limu→∞ ξuvϕ

d
v(u)[1−

∑∞
j=1 ξ

j
vgv(j)]

1− ϕv(0)

= 0.(25)

The inequality ξuvG
d
v(u+ y) ≤ ξuvG

d
v(u) together with the equation (25) imply

that

(26) lim
u→∞

ξuvG
d
v(u+ y) = 0.

On the other hand, by Lemma 3.1 we know that

ξuvϕv(u, y) ≤ ξuvϕv(u) ≤ ξ−1
v ≤ 1.

Multiplying both sides of the equation (2) by ξuv and taking limit as u → ∞,
by the dominated convergence theorem and (26) we obtain

lim
u→∞

ξuvϕ
d
v(u, y) =

∞∑
j=1

ξjvg
d
v(j){ lim

u→∞
ξuvϕv(u, y)}+ lim

u→∞
ξuvG

d
v(u+ y)

=

∞∑
j=1

ξjvg
d
v(j){ lim

u→∞
ξuvϕv(u, y)}.(27)

Since Hd
v,u(y) =

ϕd
v(u,y)
ϕd
v(u)

, by (27) we have

lim
u→∞

Hd
v,u(y) =

limu→∞ ξuvϕ
d
v(u, y)

limu→∞ ξuvϕ
d
v(u, 0)

=
limu→∞ ξuvϕv(u, y)

limu→∞ ξuvϕv(u, 0)
.(28)

We complete the proof of Theorem 2.1 by considering (11), (12) and (28).
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