• 제목/요약/키워드: Discontinuous Galerkin Method

검색결과 65건 처리시간 0.029초

NUMERICAL METHODS FOR A STIFF PROBLEM ARISING FROM POPULATION DYNAMICS

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • 제13권2호
    • /
    • pp.161-176
    • /
    • 2005
  • We consider a model of population dynamics whose mortality function is unbounded. We note that the regularity of the solution depends on the growth rate of the mortality near the maximum age. We propose Gauss-Legendre methods along the characteristics to approximate the solution when the solution is smooth enough. It is proven that the scheme is convergent at fourth-order rate in the maximum norm. We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough. The stability of the method is discussed. Several numerical examples are presented.

  • PDF

OPTIMAL ERROR ESTIMATE OF A DECOUPLED CONSERVATIVE LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE KLEIN-GORDON-SCHRÖDINGER EQUATIONS

  • YANG, HE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권1호
    • /
    • pp.39-78
    • /
    • 2020
  • In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.

A DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION

  • CHOO S. M.;LEE Y. J.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.113-126
    • /
    • 2005
  • The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.

불연속 갤러킨 유한요소법을 이용한 1차원 천이류 모의 (Simulation of One-Dimensional Transcritical Flow with Discontinuous Galerkin Finite Element Method)

  • 이해균;이남주
    • 한국콘텐츠학회논문지
    • /
    • 제13권3호
    • /
    • pp.428-434
    • /
    • 2013
  • 빈발하고 있는 대규모 홍수와 자연재해는 정확도가 높은 하천 흐름 수치해석 모델에 대한 관심의 증대로 이어지고 있다. 현재 하천에서 발생하는 일반적인 흐름은 기존에 개발된 여러 형태의 천수방정식을 지배방정식으로 하는 수치기법에 의해 해석되고 있으나, 연속적이지 않은 형태의 흐름을 해석하거나 매우 정확한 해석을 필요로 하는 경우에는 기존의 수치해석기법은 많은 한계를 보여 주고 있다. 본 연구에서는 불연속 갤러킨 기법 기반의 흐름 모델을 개발하고, 이를 이용하여 전통적으로 1차원 천이류로 분류되는, 댐 붕괴파, 둔덕위 흐름 모의에 적용하여 기존의 수치해와 대체로 잘 일치함을 확인하였다.

ERROR ESTIMATES FOR FULLY DISCRETE MIXED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR PARABOLIC PROBLEMS

  • OHM, MI RAY;LEE, HYUN YOUNG;SHIN, JUN YONG
    • East Asian mathematical journal
    • /
    • 제31권5호
    • /
    • pp.685-693
    • /
    • 2015
  • In this paper, we introduce fully discrete mixed discontinuous Galerkin approximations for parabolic problems. And we analyze the error estimates in $l^{\infty}(L^2)$ norm for the primary variable and the error estimates in the energy norm for the primary variable and the flux variable.

SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • MOON, MINAM;LIM, YANG HWAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.295-308
    • /
    • 2016
  • We propose a projection-based analysis of a new hybridizable discontinuous Gale-rkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses $L^2$-projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p + 1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.

Unstructured discretisation of a non-local transition model for turbomachinery flows

  • Ferrero, Andrea;Larocca, Francesco;Bernaschek, Verena
    • Advances in aircraft and spacecraft science
    • /
    • 제4권5호
    • /
    • pp.555-571
    • /
    • 2017
  • The description of transitional flows by means of RANS equations is sometimes based on non-local approaches which require the computation of some boundary layer properties. In this work a non-local Laminar Kinetic Energy model is used to predict transitional and separated flows. Usually the non-local term of this model is evaluated along the grid lines of a structured mesh. An alternative approach, which does not rely on grid lines, is introduced in the present work. This new approach allows the use of fully unstructured meshes. Furthermore, it reduces the grid-dependence of the predicted results. The approach is employed to study the transitional flows in the T106c turbine cascade and around a NACA0021 airfoil by means of a discontinuous Galerkin method. The local nature of the discontinuous Galerkin reconstruction is exploited to implement an adaptive algorithm which automatically refines the mesh in the most significant regions.

EXPLICIT BOUNDS FOR THE TWO-LEVEL PRECONDITIONER OF THE P1 DISCONTINUOUS GALERKIN METHOD ON RECTANGULAR MESHES

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.267-280
    • /
    • 2009
  • In this paper we investigate a simple two-level additive Schwarz preconditioner for the P1 symmetric interior penalty Galerkin method of the Poisson equation on rectangular meshes. The construction is based on the decomposition of the global space of piecewise linear polynomials into the sum of local subspaces, each of which corresponds to an element of the underlying mesh, and the global coarse subspace consisting of piecewise constants. This preconditioner is a direct combination of the block Jacobi iteration and the cell-centered finite difference method, and thus very easy to implement. Explicit upper and lower bounds for the maximum and minimum eigenvalues of the preconditioned matrix system are derived and confirmed by some numerical experiments.

  • PDF

A PETROV-GALERKIN METHOD FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITH NON-SMOOTH DATA

  • Zheng T.;Liu F.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.317-329
    • /
    • 2006
  • In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

1-D 오일러 방정식에 관한 Modal 불연속 갤러킨 기법에서의 Limiter 성능 비교 (PERFORMANCE OF LIMITERS IN MODAL DISCONTINUOUS GALERKIN METHODS FOR 1-D EULER EQUATIONS)

  • 아볼파즐 카르차니;명노신
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.1-11
    • /
    • 2016
  • Considerable efforts are required to develop a monotone, robust and stable high-order numerical scheme for solving the hyperbolic system. The discontinuous Galerkin(DG) method is a natural choice, but elimination of the spurious oscillations from the high-order solutions demands a new development of proper limiters for the DG method. There are several available limiters for controlling or removing unphysical oscillations from the high-order approximate solution; however, very few studies were directed to analyze the exact role of the limiters in the hyperbolic systems. In this study, the performance of the several well-known limiters is examined by comparing the high-order($p^1$, $p^2$, and $p^3$) approximate solutions with the exact solutions. It is shown that the accuracy of the limiter is in general problem-dependent, although the Hermite WENO limiter and maximum principle limiter perform better than the TVD and generalized moment limiters for most of the test cases. It is also shown that application of the troubled cell indicators may improve the accuracy of the limiters under some specific conditions.