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ABSTRACT. We propose a projection-based analysis of a new hybridizable discontinuous Gale-
rkin method for second order elliptic equations. The methodis more advantageous than the
standard HDG method in a sense that the new method has higher-order accuracy and lower
computational cost, and is more flexible. Notable distinctions of our new method, when com-
pared to the standard HDG emthod, are that our method usesL2

−projection and suitable sta-
bilization parameter depending on a mesh size for superconvergence. We show that the error
for the solution of the equation converges with orderp + 2 when we only use polynomials of
degreep+1 as a finite element space without postprocessing. After establishing the theory, we
carry out numerical tests to demonstrate and ensure that theproposed method is effective and
accurate in practice.

1. INTRODUCTION

In this paper, we develop and analyze a new hybridizable discontinuous Galerkin (HDG)
method for second-order elliptic equations. To present themain idea of the method, we con-
sider the following elliptic equation with the homogeneousDirichlet boundary condition:

−∇ · (κ(x)∇u) = f(x) in Ω,
u = 0 on∂Ω,

(1.1)

whereΩ is a bounded polyhedron inRk with its boundary∂Ω, f ∈ L2(Ω), κ(x) ∈ L2(Ω), and
κ(x) ≥ κ0 > 0.

Finite element method(FEM) can be used as a efficient numerical technique for obtain-
ing physically relevant solution of the problem. Recently,we are interested in finite element
method with local mass conservation. The discontinuous Galerkin (DG) method has been a
popular choice for conservative schemes [1, 2, 3]. Above this, the DG method has several
advantages over the continuous Galerkin (CG) method, see [4]. The DG method can be imple-
mented on general meshes and polynomials of arbitrary degree. The method also easily handles
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adaptivity (both mesh sizeh and degree of polynomialsp) in [5, 6] and leads to efficient par-
allelization in [7]. The DG method can be used to produce highly accurate discretization for
convection-diffusion equations in [8, 9] and can be appliedfor problems with unambiguous
boundary conditions. However, despite the listed advantages, the DG method has some practi-
cal shortcoming. The main issue is that the DG method gives larger globally coupled degrees
of freedom for the same mesh, since the boundary of element does not share the degree of
freedom. Thus, the DG method is more computationally costlycompared to the continuous
Galerkin method and/or finite difference schemes.

The standard hybridizable discontinuous Galerkin (HDG) method was recently introduced
and developed to overcome this issue. The HDG method resultsin an algebraic system that
involves only the degrees of freedom associated with the numerical traces of the field variables.
Since the numerical traces are only defined on the inter-element boundaries, degrees of freedom
are substantially reduced. As a result, the HDG method can significantly save computational
cost.

The standard HDG method was first introduced for second orderelliptic problems in [10,
11]. The error estimates based on a spacial projection were developed for elliptic problems in
[12]. Optimal convergence order for HDG methods were established in theL2-norm ofp + 1
if polynomials of degreep are used and the exact solution is smooth enough [13]. The choices
of stabilization parameter were numerically presented andanalyzed in the sense of the optimal
convergence order of numerical solutions [14, 15]. Based onthe optimal convergence and su-
perconvergence of HDG methods, local postprocessing was developed to getp+2 convergence
order of numerical solutions [13].

On the other hand, our HDG method improves the standard HDG method. First, our method
obtains(p+2)th convergence order by changing the value of the stabilization parameterτ with
polynomials of degreep + 1 as a finite element space, without using the local postprocessing.
For a given triangulationTh with maximum diameterh > 0, we can define the stability pa-
rameterτ = O(h−1) and derive the convergence order ofp + 2 of the solution of the elliptic
problem with polynomials of degreep + 1. Globally coupled degrees of freedom is higher
than those derived by the standard HDG method because the method requires polynomials
with degree one higher than those needed for the standard HDGmethod. However, we can
save time for computation for the local processing. Secondly, we can easily derive error esti-
mates for the problem with localL2-projection. In the standard HDG method, we use a local
HDG-projection with some assumptions to derive the error estimates. Our approach is more
general and easier to understand. Furthermore, by using themethod we can derive the errors
of solution. Based on these projection, we derive the error estimates for the solution (pressure)
u and velocityq.

The elliptic problem with constant coefficientκ are numerically tested on the proposed HDG
method. With this, we can observe the robustness of the convergence based on our new HDG
method. We also confirm that the convergence order of our HDG method equals to the order
derived from theoretical analysis, i.e., the convergence order of the pressureu is p + 2 when
we use polynomials of degreep+ 1 and the convergence order of velocityq is p+ 1 when we
use polynomials of degreep.
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The paper is organized in the following way. In Section 2, we introduce some notations,
a new hybridizable discontinuous Galerkin method. We will also derive the solvability of the
method. In Section 3, we drive the error estimates for our method by usingL2 projection, not
HDG-projection. In Section 4, we present a numerical experiment and confirm our theoretical
analysis by documenting the error of our method. In the final section, we discuss the analysis
and the numerical result. The theoretical results are derived under the condition that the order
of convergence depends on the stabilization parameterτ . Based on the analysis and numerical
results we can conclude that our method gives practically valid results in using the stabilization
parameter depending on mesh size.

2. NOTATION, HDG METHOD, AND SOLVABILITY

We begin this section with presenting basic notations and hypotheses of meshes. We then
introduce our new HDG method for the problem (1.1). Finally,we derive the solvability of the
proposed method.

2.1. Notation. Let Th be a conforming, shape-regular simplicial triangulation of Ω. For any
elementT ∈ Th, ∂T is defined to be the set of the edges ofT whendim(T ) = 2, and the
set of the faces ofT whendim(T ) = 3, and denoted byF . Let ∂Th = ∪T∈Th

∂T . Let Eh
denote the set of all edges/faces of the triangulationTh, andE0

h be the set of all interior faces
of the triangulation. For any elementT ∈ Th, let hT be the diameter of elementT , and let
h = maxT∈Th

hT .
Throughout the paper, we will use the standard notations forSobolev spaces and their norms

on the domainΩ and their boundaries. For example,||v||s,Ω, |v|s,Ω, ||v||s,∂Ω, |v|s,∂Ω, s > 0,
denote the Sobolev norms and semi-norms onΩ and its boundary∂Ω. For an integers, the
Sobolev spaces are Hilbert spaces and the norms are defined bytheL2-norms of their weak
derivatives up to orders. For a non-integers, the spaces are defined by interpolation [16].
Whens = 0 we will use||v||Ω instead of||v||0,Ω.

2.2. HDG method. To apply the new Hybridizable discontinuous Galerkin method, we con-
sider the model problem (1.1) with homogeneous boundary condition in a mixed form:

αq +∇u = 0 in Ω,
∇ · q = f in Ω,

u = 0 on∂Ω,
(2.1)

whereq = −κ(x)∇u, andα(x) = κ(x)−1.
For any elementT ∈ Th and any faceF ∈ Eh, we define

V (T ) := (Pp(T ))k, W (T ) := Pp+1(T ), M(F ) := Pp(F ),

wherePp(D) denotes the set of polynomials of degree at mostp on aD. Now, we consider
the following finite element spaces:

V h := {v ∈ L2(Ω) : v|T ∈ V (T ) for all T ∈ Th},
Wh := {w ∈ L2(Ω) : w|T ∈ W (T ) for all T ∈ Th},
Mh := {µ ∈ L2(Eh) : µ|F ∈ M(F ) for all F ∈ Eh},
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whereL2(Ω) := (L2(Ω))k andL2(Eh) := ΠF∈Eh
L2(F ).

Remark 2.1. Note that unlike the standard HDG method, we define the finite element space
W (T ) with polynomials of degree at mostp + 1. As we will soon see, this will yield higher
accuracy (p+ 2 instead ofp+ 1) without any postprocessing.

For vector-valued functionsu,v ∈ (L2(D))k, we define(u,v)D =
∫

D
u · v. For scalar-

valued functionsu, v ∈ L2(D), let (u, v)D =
∫

D
uv, if the domainD is a subset ofRk. If ∂D

is inR
k−1, we define〈u, v〉∂D =

∫

∂D
uvds. Then, we introduce the following notation:

(w, v)Th =
∑

T∈∂Th
(w, v)T , 〈w, v〉∂Th =

∑

∂T∈∂Th
〈w, v〉∂T . (2.2)

With these finite element spaces and notations, we can get thefollowing HDG formulation:
Find (uh, qh, ûh) ∈ Wh × V h ×Mh such that

(αqh,v)Th − (uh,∇ · v)Th + 〈ûh,v · n〉∂Th = 0 ∀v ∈ V h,

−(qh,∇w)Th + 〈q̂h · n, w〉∂Th = (f,w)Th ∀w ∈ Wh,

〈q̂h · n, µ〉∂Th\∂Ω = 0 ∀µ ∈ Mh,

ûh = 0 on∂Ω.

(2.3)

We define the normal component of the numerical trace as follows :

q̂h · n = qh · n+ τ(P∂uh − ûh) (2.4)

whereP∂ is theL2−projection operator on the spaceMh.

Remark 2.2. In our method, to define the nomal component of the numerical trace (2.4), we
consider theL2−projection operator on the spaceMh because ofW (T )|F 6= M(F ).

2.3. Matrix formulation. For implementation, we insert the normal component of the numer-
ical trace in the third equation of (2.3), after some manipulations, obtain that(uh, qh, ûh) ∈
Wh × V h ×Mh is the solution of the following weak formulation.

a(qh,v)− b(uh,v) + c(ûh,v) = 0,
−b(w, qh)− d(P∂uh, w) + e(ûh, w) = −f(w),

c(µ, qh) + e(µ, P∂uh)− g(µ, ûh) = 0,
(2.5)

for all (w,v, µ) ∈ Wh × V h × Mh. Here, the bilinear forms and the linear functional are
defined by

a(q,v) = (αq , v)Th , b(u,v) = (u , ∇ · v)Th ,
c(û,v) = 〈û , v · n〉∂Th , d(u,w) = 〈w , τu〉∂Th ,

e(µ, u) = 〈µ , τu〉∂Th , g(µ, û) = 〈µ , τ û〉∂Th , f(w) = (f , w)Th ,

(2.6)

for all (u, q, û) and(w,v, µ) in Wh × V h ×Mh.
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The discretization of the system of equations (2.5) gives rise to the following matrix equation
:





A −BT CT

−B −D E

C ET G









Q

U
̂U



 = −





0
F

0



 (2.7)

HereQ,U and ̂U are vectors of degrees of freedom forqh, uh, and ûh, respectively. The
matrices in (2.7) correspond to the bilinear forms in (2.6) in the order they appear in the system
of equation (2.5).

Since the HDG method produces a final system in terms of globally coupled degrees of
freedom of the numerical tracêuh (or ̂U ) only, the first and second equation of (2.3) can be
used to remove bothqh anduh in an element by element sense. Then, we obtain a reduced
globally coupled matrix equation just for̂U :

K̂U = F (2.8)

where

K = −
[

C ET
]

[

A −BT

−B −D

]

−1 [
CT

E

]

+G,

and

F =
[

C ET
]

[

A −BT

−B −D

]

−1 [
0
F

]

By solving the matrix equation (2.8), we get the value of̂U . PlugginĝU back to the equation
(2.7), we obtainQ andU as below :

[

Q

U

]

=

[

A −BT

−B −D

]

−1([
0

−F

]

−
[

CT

E

]

̂U

)

.

2.4. Solvability of the HDG method. Next, we discuss the stability and solvability of the
HDG method. Under some conditions for the stabilization parameterτ , we derive the solvabil-
ity of the method.

Theorem 2.3. If τ > 0 on∂T for all T , then for anyf , the system(2.3)has a unique solution.

Proof. Note that the system (2.3) is the square system by (2.7). It isenough to show that the
homogeneous system( i.e.,f = 0) only has a trivial solution. Take(w,v, µ) = (uh, qh, ûh)
and by adding all equations, we get after some algebraic manipulation, we get

(αqh, qh)Th − 〈qh · n− q̂h · n, uh − ûh〉∂Th = 0.

By the definition of the numerical traces (2.4) and the property of local projection operatorP∂ ,
we have

(αqh, qh)Th + 〈τ(P∂uh − ûh), P∂uh − ûh〉∂Th = 0

and sinceτ > 0 we get
qh = 0, P∂uh − ûh = 0. (2.9)
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Also, the first equation of (2.3) becomes

−(uh,∇ · v)Th + 〈ûh,v · n〉∂Th = 0, for all v ∈ V h.

Now we take this over an elementT and by integrating by parts and using the property of local
projection operatorP∂ , we get

(∇uh,v)T + 〈ûh − P∂uh,v · n〉∂T = 0, for all v ∈ V (T ).

SinceP∂uh − ûh = 0, this becomes

(∇uh,v)T = 0 for all v ∈ V (T ).

By takingv = ∇uh, we conclude thatuh is piecewise constant on eachT . Since any interior
edgeF is shared by two neighboring elementsT+ andT−, uh = C. Sinceûh = 0 on∂Ω and
P∂uh − ûh = 0, uh, ûh, andC should all be zero. �

3. ERROR ANALYSIS

On each elementT, there exist localL2−projection operators

ΠW : H1(T ) → W (T ) and ΠV : Hdiv(T ) → V (T )

defined by:
(u,w)T = (ΠWu,w)T for all w ∈ W (T ),
(q,v)T = (ΠV q,v)T for all v ∈ V (T ).

3.1. Error equations. We begin by obtaining the error equations that will be used for the error
analysis. The main idea is to work with the following projection errors:

eq := ΠV q − qh, eu := ΠWu− uh, eû := P∂u− ûh.

Lemma 3.1. We have

(αeq,v)Th − (eu,∇ · v)Th + 〈eû,v · n〉∂Th = 0,

−(eq,∇w)Th + 〈q · n− q̂h · n, w〉∂Th = 0,

〈q · n− q̂h · n, µ〉∂Th = 0,

〈eû, µ〉∂Th = 0,

(3.1)

for all (w,v, µ) ∈ Wh × V h ×Mh.

Proof. The exact solution(u, q) obviously satisfies

(αq,v)Th − (u,∇ · v)Th + 〈u,v · n〉∂Th = 0,

−(q,∇w)Th + 〈q · n, w〉∂Th = (f,w),

〈q · n, µ〉∂Th = 0,

〈u, µ〉∂Th = 0,

for all (w,v, µ) ∈ Wh × V h ×Mh.
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By the definition of the projections(ΠV ,ΠW , P∂), we can get

(αΠV q,v)Th − (ΠWu,∇ · v)Th + 〈P∂u,v · n〉∂Th = 0,

−(ΠV q,∇w)Th + 〈q · n, w〉∂Th = (f,w),

〈q · n, µ〉∂Th = 0,

〈P∂u, µ〉∂Th = 0,

for all (w,v, µ) ∈ Wh×V h×Mh. Subtracting these equations defining the weak formulation
(2.3) from the above equation, respectively, we obtain the error equations of Lemma 3.1. �

Lemma 3.2. We have

eq · n− (q · n− q̂h · n) = ΠV q · n− q · n− τ(P∂eu − eû) + τP∂(ΠWu− u). (3.2)

Proof. By the normal component of the numerical trace (2.4), we have

eq · n− (q · n− q̂h · n) = ΠV q · n− qh · n− q · n+ qh · n+ τ(P∂uh − ûh)
= ΠV q · n− q · n+ τ(P∂uh − ûh).

Also, we get

P∂uh − ûh = P∂uh + P∂u− P∂u+ P∂ΠWu− P∂ΠWu− ûh
= (P∂u− ûh)− P∂(ΠWu− uh) + P∂(ΠWu− u)
= eû − P∂eu + P∂(ΠWu− u).

Therefore, we get the equation (3.2). �

3.2. Estimate for q − qh. We define the weightedL2−norm as following:9v92
α,Ω := (αv,v)Th and 9 w92

τ,∂Th
:= 〈τw,w〉∂Th . (3.3)

First we note the following standard estimates for the erroron any triangleT and edgy/face
F ⊂ ∂T .

Proposition 3.3. If u andq are smooth functions, then we have

‖u−ΠWu‖T ≤ Chk+2|u|k+2,T ,

‖q −ΠV q‖T ≤ Chk+1|q|k+1,T ,

‖q − P∂q‖F ≤ Chk+
1

2 |q|k+1,T .

(3.4)

Proof. See [17]. �

Lemma 3.4. We have9eq 92
α,Ω + 9 P∂eu − eû92

τ,∂Th
≤ S1 + S2 + S3, (3.5)

where
S1 := Cτ

1

2h−
1

2 ‖u−ΠWu‖Ω · 9P∂eu − eû9τ,∂Th

S2 := Cτ−
1

2h−
1

2 ‖q −ΠV q‖Ω · 9P∂eu − eû9τ,∂Th

S3 := Ch
1

2‖q − P∂q‖∂Th · ‖∇eu‖Ω.



302 MINAM MOON AND YANG HWAN LIM

Proof. Takev = eq, w = eu, andµ = eû in error equations (3.1) and by Lemma 3.2, we have9eq 92
α,Ω + 9 P∂eu − eû92

τ,∂Th
= 〈q · n−ΠV q · n, eu − eû〉∂Th

+ 〈τ(P∂(u−ΠWu)), eu − eû〉∂Th .
Observe that

〈τ(P∂(u−ΠWu)), eu − eû〉∂Th = 〈τ(P∂(u−ΠWu)), P∂eu − eû〉∂Th
=

〈

τ
1

2 (u−ΠWu), τ
1

2 (P∂eu − eû)
〉

∂Th

≤ Cτ
1

2h−
1

2 ‖u−ΠWu‖Ω · 9P∂eu − eû 9τ,∂Th .

Also, we have

〈q · n−ΠV q · n, eu − eû〉∂Th = 〈q · n−ΠV q · n, P∂eu − eû〉∂Th
+ 〈q · n−ΠV q · n, eu − P∂eu〉∂Th .

Note that

〈q · n−ΠV q · n, P∂eu − eû〉∂Th ≤ Cτ−
1

2h−
1

2 ‖q −ΠV q‖Ω · 9P∂eu − eû9τ,∂Th

and

〈q · n−ΠV q · n, eu − P∂eu〉∂Th = 〈q · n− P∂(q · n), eu − P∂eu〉∂Th
≤ Ch−

1

2‖q − P∂q‖∂Th · ‖eu − P∂eu‖Ω
≤ Ch

1

2 ‖q − P∂q‖∂Th · ‖∇eu‖Ω.
Therefore, we get the inequality (3.5). �

Lemma 3.5. We have

‖∇eu‖Ω ≤ C
(9eq 9α,Ω +τ−

1

2h−
1

2‖P∂eu − eû‖τ,∂Th
)

. (3.6)

Proof. By the first equation of error equation (3.1) and integrationby parts, we have

(αeq,v)Th + (∇eu,v)Th + 〈eû − eu,v · n〉∂Th = 0.

Takev = ∇eu. Then, we get

‖∇eu‖2Ω = −(αeq,∇eu)Th + 〈eu − eû,∇eu · n〉∂Th
= −(αeq,∇eu)Th + 〈P∂eu − eû,∇eu · n〉∂Th
≤ C 9 eq 9α,Ω ‖∇eu‖Ω + τ−

1

2 9 P∂eu − eû 9τ,∂Th Ch−
1

2 ‖∇eu‖Ω.
Therefore, we have

‖∇eu‖Ω ≤ C 9 eq 9α,Ω +Cτ−
1

2h−
1

2 9 P∂eu − eû 9τ,∂Th .

�

Theorem 3.6. We have9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th ≤ Cτ
1

2hk+
3

2 |u|k+2,Ω

+ Cτ−
1

2hk+
1

2 |q|k+1,Ω + Chk+1|q|k+1,Ω.
(3.7)
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Proof. By Lemmas 3.4, 3.5 and Proposition 3.3, we have

S1 = Cτ
1

2h−
1

2‖u−ΠWu‖Ω · 9P∂eu − eû9τ,∂Th

≤ Cτ
1

2hk+
3

2 |u|k+2,Ω · 9P∂eu − eû9τ,∂Th

≤ Cτ
1

2hk+
3

2 |u|k+2,Ω · (9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th) ,

S2 = Cτ−
1

2h−
1

2‖q −ΠV q‖Ω · 9P∂eu − eû9τ,∂Th

≤ Cτ−
1

2hk+
1

2 |q|k+1,Ω · 9P∂eu − eû9τ,∂Th

≤ Cτ−
1

2hk+
1

2 |q|k+1,Ω · (9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th) ,

and

S3 = Ch
1

2 ‖q − P∂q‖∂Th · ‖∇eu‖Ω
≤ Chk+1|q|k+1,Ω ·

(9eq 9α,Ω +τ−
1

2h−
1

2 9 P∂eu − eû9τ,∂Th

)

≤ Chk+1|q|k+1,Ω · (9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th)

+Cτ−
1

2hk+
1

2 |q|k+1,Ω · (9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th) .

Therefore, we have9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th ≤ Cτ
1

2hk+
3

2 |u|k+2,Ω + Cτ−
1

2hk+
1

2 |q|k+1,Ω

+Chk+1|q|k+1,Ω.

�

Corollary 3.7. If τ = O
(

h−1
)

, then we have9eq 9α,Ω + 9 P∂eu − eû9τ,∂Th ≤ Chk+1 (|u|k+2,Ω + |q|k+1,Ω) . (3.8)

Remark 3.8. It is important to note that the stabilization parameterτ of the above Corollary
depends on a mesh size, i.e.,τ = O(h−1). When we choose the value depending on a mesh size
O(h−1) as the stabilization parameterτ , we achieve the consistent order of convergence. If
this is not the case, the order of convergence is inconsistent since the order of the stabilization
parameterτ varies according to right-hand side terms from Theorem 3.6.

3.3. Estimate for u − uh. Next, we derive the result regarding the erroru − uh. It is valid
under a typical elliptic regularity property. Let(θ, φ) be the solution of the following dual
problem :

αθ +∇φ = 0, in Ω
∇ · θ = eu, in Ω

φ = 0 on ∂Ω.
(3.9)

We assume that we have fullH2−regularity,

‖φ‖2,Ω + ‖θ‖1,Ω ≤ C‖eu‖Ω, (3.10)

whereC only depends on the domainΩ.
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Lemma 3.9. Assume that theH2−regularity (3.10)holds. Then, we have

(eu, eu)Th = T1 + T2 − T3, (3.11)

where
T1 = −(αeq,θ −ΠV θ)Th ,
T2 = 〈eu − eû,θ · n−ΠV θ · n〉∂Th ,
T3 = 〈eq · n− (q · n− q̂h · n), P∂φ−ΠWφ〉

∂Th
.

Proof. By the second equation of dual problem (3.9) and integratingby parts, we get

(eu, eu)Th = (eu,∇ · θ)Th
= (eu,∇ · θ)Th − (eq, αθ)Th − (eq,∇φ)Th
= (eu,∇ ·ΠV θ)Th − (eq, αΠV θ)Th − (eq,∇ΠWφ)Th

+(eu,∇(θ −ΠV θ))Th − (eq, α(θ −ΠV θ))Th − (eq,∇(φ−ΠWφ))Th
= 〈eû,ΠV θ · n〉∂Th − 〈q · n− q̂h · n,ΠWφ〉∂Th + (eu,∇ · (θ −ΠV θ))Th

−(αeq,θ −ΠV θ)Th − (eq,∇(φ−ΠWφ))Th .

We observe that

〈eû,θ · n〉∂Th = 0 and 〈q · n− q̂h · n, P∂φ〉∂Th = 0.

Integrating by parts and the above result lead us to concludethat

T2 − T3 = 〈eû,ΠV θ · n〉∂Th − 〈q · n− q̂h · n,ΠWφ〉∂Th
+(eu,∇ · (θ −ΠV θ))Th − (eq,∇(φ−ΠWφ))Th

= 〈eû,ΠV θ · n〉∂Th − 〈q · n− q̂h · n,ΠWφ〉∂Th
+ 〈eu,θ · n−ΠV θ · n〉∂Th − 〈eq · n, P∂φ−ΠWφ〉

∂Th
= 〈eu − eû,θ · n−ΠV θ · n〉∂Th

−〈eq · n− (q · n− q̂h · n), P∂φ−ΠWφ〉∂Th .
�

Lemma 3.10. Assume that theH2−regularity (3.10)holds. Then, we have

|T1| ≤ Ch 9 eq 9α,Ω ·‖eu‖Ω,
|T2| ≤ Ch 9 eq 9α,Ω ·‖eu‖Ω + Cτ−

1

2h
1

2 9 P∂eu − eû 9τ,∂Th ·‖eu‖Ω,
|T3| ≤ Chk+2|q|k+1,Ω · ‖eu‖Ω + Cτ

1

2h
3

2 9 P∂eu − eû 9τ,∂Th ·‖eu‖Ω
+Cτhk+3|u|k+2,Ω · ‖eu‖Ω.

(3.12)

Proof. We will estimate|T1|, |T2|, and|T3| separately, by using results from Lemma 3.9. First
we estimate|T1|.

|T1| = |(αeq,θ −ΠV θ)Th | ≤ C 9 eq 9α,Ω ·‖θ −ΠV θ‖Ω
≤ Ch 9 eq 9α,Ω ·‖θ‖1,Ω ≤ Ch 9 eq 9α,Ω ·‖eu‖Ω.

Next, we estimate of|T2|.

|T2| =
∣

∣

∣
〈eu − eû,θ · n−ΠV θ · n〉∂Th

∣

∣

∣

≤
∣

∣

∣
〈P∂eu − eû,θ · n−ΠV θ · n〉∂Th

∣

∣

∣
+

∣

∣

∣
〈eu − P∂eu,θ · n−ΠV θ · n〉∂Th

∣

∣

∣
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Observe that
∣

∣

∣
〈P∂eu − eû,θ · n−ΠV θ · n〉∂Th

∣

∣

∣
≤ Cτ−

1

2h−
1

2 9 P∂eu − eû 9τ,∂Th ·‖θ −ΠV θ‖Ω
≤ Cτ−

1

2h
1

2 9 P∂eu − eû 9τ,∂Th ·‖θ‖1,Ω
≤ Cτ−

1

2h
1

2 9 P∂eu − eû 9τ,∂Th ·‖eu‖Ω,
and

∣

∣

∣
〈eu − P∂eu,θ · n−ΠV θ · n〉∂Th

∣

∣

∣
=

∣

∣

∣
〈eu − P∂eu,θ · n− P∂(θ · n)〉∂Th

∣

∣

∣

≤ Ch−1‖eu − P∂eu‖Ω · ‖θ −ΠV θ‖Ω
≤ C‖eu − P∂eu‖Ω · ‖θ‖1,Ω
≤ Ch‖∇eu‖Ω · ‖eu‖Ω
≤ Ch 9 eq 9α,Ω ·‖eu‖Ω

+Cτ−
1

2h
1

2 9 P∂eu − eû 9τ,∂Th ·‖eu‖Ω.
Then, we get the second inequality. By Lemma 3.2, we have

T3 = 〈ΠV q · n− q · n− τ(P∂eu − eû) + τ(ΠWu− u), P∂φ−ΠWφ〉∂Th
= 〈ΠV q · n− q · n− τ(P∂eu − eû) + τ(ΠWu− u), φ−ΠWφ〉∂Th

+ 〈ΠV q · n− q · n− τ(P∂eu − eû) + τ(ΠWu− u), P∂φ− φ〉∂Th .
Observe that

∣

∣

∣
〈ΠV q · n− q · n, φ−ΠWφ〉∂Th

∣

∣

∣
=

∣

∣

∣
〈P∂(q · n)− q · n, φ−ΠWφ〉∂Th

∣

∣

∣

≤ ‖q − P∂q‖∂Th · ‖φ−ΠWφ‖∂Th
≤ Chk+

1

2 |q|k+1,Ω · h 3

2 ‖φ‖2,Ω
≤ Chk+2|q|k+1,Ω · ‖eu‖Ω,

∣

∣

∣
〈τ(P∂eu − eû), φ−ΠWφ〉∂Th

∣

∣

∣
≤ Cτ

1

2 9 P∂eu − eû 9τ,∂Th ·‖φ−ΠWφ‖∂Th
≤ Cτ

1

2h
3

2 9 P∂eu − eû 9τ,∂Th ·‖eu‖Ω,
and

∣

∣

∣
〈τ(ΠWu− u), φ−ΠWφ〉∂Th

∣

∣

∣
≤ Cτ‖ΠWu− u‖∂Th · ‖φ−ΠWφ‖∂Th
≤ Cτhk+

3

2 |u|k+2,Ω · h 3

2‖φ‖2,Ω
≤ Cτhk+3|u|k+2,Ω · ‖eu‖Ω.

Since‖P∂φ−φ‖∂Th ≤ h
3

2‖eu‖Ω, by combining the above estimates, we get the desired result.
�

Theorem 3.11. Assume that theH2−regularity (3.10)holds. Then, we have

‖eu‖Ω ≤ C
(

τ
1

2hk+
5

2 + τhk+3 + hk+2
)

|u|k+2,Ω

+C
(

τ−
1

2hk+
3

2 + τ−1hk+1 + τ
1

2hk+
5

2 + hk+2
)

|q|k+1,Ω.
(3.13)
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Proof. By the Lemma 3.9, 3.10 and Theorem 3.6, we automatically get the inequality. �

As a consequence of Theorem 3.11, we immediately have the following estimate foreu:

Corollary 3.12. Assume that theH2−regularity (3.10)holds. Ifτ = O
(

h−1
)

, then we have

‖eu‖Ω ≤ Chk+2 (|u|k+2,Ω + |q|k+1,Ω) . (3.14)

Remark 3.13. Note that the main advantage of the proposed HDG method is superconvergence
of problems without a local postprocessing. Achievement ofthis goal depends on the value of
stabilization parameterτ in Corollary 3.12. When we choose the value depending on a mesh
size,O(h−1), as the stabilization parameterτ , we achieve the(p + 2)th convergence order of
the problem without the local postprocessing. However, when other values are choosen, the
superconvergence may not be guaranteed.

4. NUMERICAL RESULTS

In this section, we present a numerical example to demonstrate the accuracy and efficiency
of the proposed HDG method. We are mainly interested on the order of convergence when a
mesh sizeh is refined. We study the error behavior originated from selecting of the stabilization
parameterτ .

We consider a numerical example in two dimensions. Similarly, extending the result to three
dimensions is simple. We also generate a structured triangulation withnth subintervals in each
coordinate direction. We consider the following finite element spaces in order to apply the
proposed HDG method.V h consists of piecewise linear, discontinuous functions onTh, Mh of
piecewise linear, discontinuous functions inEh, andWh of piecewise quadratic, discontinuous
onTh.

Example 4.1. We consider the domainΩ = (0, 1)2, withα = 1 andτ = h−1. The source term
f(x, y) = −2x(x− 1)− 2y(y − 1) is selected in such a way that

u(x, y) = xy(x− 1)(y − 1)

is the exact solution of(1.1).

Table 1 shows the convergence rates of the Example 4.1. The order of convergence for
velocityq in weightedL2−norm is two and the those for pressureu in L2−norm is three. This
matches well with the prediction in Corollaries 3.7 and 3.12.

5. CONCLUSION

In this paper, we introduce a new hybrid discontinuous Galerkin method for solving elliptic
equations. Comparing with the standard HDG method, the proposed HDG method is advanta-
geous in three different aspects. First of all, under the framework of weak formulation, weak
formulation in our method just changes the finite element space Wh with polynomials with
degree one higher than those used in the standard HDG method and the numerical component
of the numerical trace considering projection operator on theMh. Despite this advantage, we
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TABLE 1. The order of convergence forτ = h−1

‖q − qh‖Ω ‖u− uh‖Ω
h Error Order Error Order
1/8 0.0227 —– 0.0023 —–
1/16 0.0056 2.019 2.8434e-04 3.015
1/32 0.0014 2.000 3.5487e-05 3.002
1/64 3.4963e-04 2.001 4.4330e-06 3.000
1/128 8.7377e-05 2.000 5.5397e-07 3.000

retain the merit of the standard HDG method such as reductionof degree of freedom and flex-
ibility since the changes we made do not affect the advantageof the standard HDG method.
Secondly, in high order accuracy, the standard HDG method requires a local postprocessing
for superconvergence, while our HDG method only needs to change the stabilization parame-
ter. Finally, error estimates can be derive by using localL2−projecton when we perform error
analysis. In short, projection based analysis in our proposed method is both easier and more
convenient than the HDG-projection for the standard HDG method. Our numerical examples
and error analysis further demonstrate high order accuracy.
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[9] P. Castillo, B. Cockburn, D. Schötzau, and C. Schwab,Optimal a priori error estimates for the hp-version of
the local discontinuous Galerkin method for convection-diffusion problems, Mathematics of Computation,71
(2002), 455–478.

[10] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini,Unified analysis of discontinuous Galerkin methods
for elliptic problems, SIAM Journal on Numerical Analysis,39 (2001), 1749–1779.



308 MINAM MOON AND YANG HWAN LIM

[11] B. Cockburn, J. Gopalakrishnan, and R. Lazarov,Unified hybridization of discontinuous Galerkin, mixed, and
continuous Galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis,47
(2009), 1319–1365.

[12] B. Cockburn, J. Gopalakrishnan, and F-J. Sayas,A projection-based error analysis of HDG methods, Mathe-
matics of Computation,79 (2010), 1351–1367.

[13] B. Cockburn, W. Qiu, and K. Shi,Conditions for superconvergence of HDG methods for second-order elliptic
problems, Mathematics of Computation,81 (2012), 1327–1353.

[14] N.C. Nguyen, J. Peraire, and B. Cockburn,An implicit high-order hybridizable discontinuous Galerkin method
for linear convection–diffusion equations, Journal of Computational Physics,228 (2009), 3232–3254.

[15] N.C. Nguyen, J. Peraire, and B. Cockburn,An implicit high-order hybridizable discontinuous Galerkin method
for nonlinear convection–diffusion equations, Journal of Computational Physics,228 (2009), 8841–8855.

[16] P. Grisvard,Elliptic problems in nonsmooth domains, Pitman, Boston, MA, 1985.
[17] P.G. Ciarlet,The finite element method for elliptic problems, Elsevier North-Holland, New York, 1978.




