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ABSTRACT. We propose a projection-based analysis of a new hybrittizdicontinuous Gale-
rkin method for second order elliptic equations. The metitsochore advantageous than the
standard HDG method in a sense that the new method has lughar-accuracy and lower
computational cost, and is more flexible. Notable distmtdiof our new method, when com-
pared to the standard HDG emthod, are that our method ifsegrojection and suitable sta-
bilization parameter depending on a mesh size for supeetgarce. We show that the error
for the solution of the equation converges with orger 2 when we only use polynomials of
degreep + 1 as a finite element space without postprocessing. Aftebksitiing the theory, we
carry out numerical tests to demonstrate and ensure thardpesed method is effective and
accurate in practice.

1. INTRODUCTION

In this paper, we develop and analyze a new hybridizableodtgtuous Galerkin (HDG)
method for second-order elliptic equations. To presentiibe idea of the method, we con-
sider the following elliptic equation with the homogenedischlet boundary condition:

-V (k(z)Vu) = f(z) inQ,
u = 0 onox,

whereQ is a bounded polyhedron IR* with its boundan®q, f € Ly(Q), k(x) € Ly(Q2), and
k(x) > Ko > 0.

Finite element method(FEM) can be used as a efficient nuaiegchnique for obtain-
ing physically relevant solution of the problem. Recentig are interested in finite element
method with local mass conservation. The discontinuou®i®ial (DG) method has been a
popular choice for conservative schemes [1, 2, 3]. Abovs, tihie DG method has several
advantages over the continuous Galerkin (CG) method, $e€tié DG method can be imple-
mented on general meshes and polynomials of arbitrary degitee method also easily handles
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adaptivity (both mesh size and degree of polynomialg in [5, 6] and leads to efficient par-

allelization in [7]. The DG method can be used to produce lgiglscurate discretization for

convection-diffusion equations in [8, 9] and can be appfmdproblems with unambiguous

boundary conditions. However, despite the listed advasiaidpe DG method has some practi-
cal shortcoming. The main issue is that the DG method givgetalobally coupled degrees
of freedom for the same mesh, since the boundary of eleme# dot share the degree of
freedom. Thus, the DG method is more computationally castiypared to the continuous

Galerkin method and/or finite difference schemes.

The standard hybridizable discontinuous Galerkin (HDG)hoe was recently introduced
and developed to overcome this issue. The HDG method rasudis algebraic system that
involves only the degrees of freedom associated with theanigal traces of the field variables.
Since the numerical traces are only defined on the interexieboundaries, degrees of freedom
are substantially reduced. As a result, the HDG method gmifisiantly save computational
cost.

The standard HDG method was first introduced for second atiptic problems in [10,
11]. The error estimates based on a spacial projection werglaped for elliptic problems in
[12]. Optimal convergence order for HDG methods were eistadd in theL?-norm ofp + 1
if polynomials of degree are used and the exact solution is smooth enough [13]. Theesho
of stabilization parameter were numerically presentedaaradyzed in the sense of the optimal
convergence order of numerical solutions [14, 15]. Basetheroptimal convergence and su-
perconvergence of HDG methods, local postprocessing wasaesd to gep+ 2 convergence
order of numerical solutions [13].

On the other hand, our HDG method improves the standard HDBadeFirst, our method
obtains(p+ 2)th convergence order by changing the value of the stabidizgtarameter with
polynomials of degrege + 1 as a finite element space, without using the local postpsougs
For a given triangulatiory;, with maximum diametef > 0, we can define the stability pa-
rameterr = O(h~!) and derive the convergence orderpof 2 of the solution of the elliptic
problem with polynomials of degree+ 1. Globally coupled degrees of freedom is higher
than those derived by the standard HDG method because thednetquires polynomials
with degree one higher than those needed for the standard tH&God. However, we can
save time for computation for the local processing. Segomwdt can easily derive error esti-
mates for the problem with locdl?-projection. In the standard HDG method, we use a local
HDG-projection with some assumptions to derive the errtimedes. Our approach is more
general and easier to understand. Furthermore, by usingeiieod we can derive the errors
of solution. Based on these projection, we derive the estimates for the solution (pressure)
u and velocitygq.

The elliptic problem with constant coefficientare numerically tested on the proposed HDG
method. With this, we can observe the robustness of the opemee based on our new HDG
method. We also confirm that the convergence order of our HRaod equals to the order
derived from theoretical analysis, i.e., the convergenderoof the pressure is p + 2 when
we use polynomials of degree+ 1 and the convergence order of velocitys p + 1 when we
use polynomials of degree
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The paper is organized in the following way. In Section 2, wieaduce some notations,
a new hybridizable discontinuous Galerkin method. We wdbalerive the solvability of the
method. In Section 3, we drive the error estimates for ouhoeeby usingL? projection, not
HDG-projection. In Section 4, we present a numerical expent and confirm our theoretical
analysis by documenting the error of our method. In the fieatisn, we discuss the analysis
and the numerical result. The theoretical results are ééninder the condition that the order
of convergence depends on the stabilization paramet®ased on the analysis and numerical
results we can conclude that our method gives practicallg v@sults in using the stabilization
parameter depending on mesh size.

2. NoTATION, HDG METHOD, AND SOLVABILITY

We begin this section with presenting basic notations ambtheses of meshes. We then
introduce our new HDG method for the problem (1.1). Finadlg, derive the solvability of the
proposed method.

2.1. Notation. Let 7; be a conforming, shape-regular simplicial triangulatiério For any
elementT” € T, 0T is defined to be the set of the edgesiofvhendim(7") = 2, and the
set of the faces of' whendim(7') = 3, and denoted by". Letd7;, = Urcr, 0T. Leté&,,
denote the set of all edges/faces of the triangula‘ﬂ'gnandé’,? be the set of all interior faces
of the triangulation. For any elemefiit € 7}, let hr be the diameter of elemefit, and let
h = maxreT, hT.

Throughout the paper, we will use the standard notationSdtolev spaces and their norms
on the domair2 and their boundaries. For examplgi|s.q, [v]s.. [|[v]|s.00, [v]sea, s > 0,
denote the Sobolev norms and semi-normgand its boundary)$2. For an integew, the
Sobolev spaces are Hilbert spaces and the norms are defirtbé by-norms of their weak
derivatives up to ordes. For a non-integes, the spaces are defined by interpolation [16].
Whens = 0 we will use||v||q instead of|v]|o q.

2.2. HDG method. To apply the new Hybridizable discontinuous Galerkin mdth@e con-
sider the model problem (1.1) with homogeneous boundargiton in a mixed form:
ag+Vu = 0 inQ,
V-q = f inQ, (2.1)
u = 0 onoQ,

whereq = —k(z)Vu, anda(z) = x(z)~t.
For any elemeni” € 7, and any face” € &, we define
V(T) = (PP(T))*, W(T) := PP*(T), M(F) := P"(F),

whereP?(D) denotes the set of polynomials of degree at mosh a D. Now, we consider
the following finite element spaces:

V, = {veL*Q):v|lpcV(T)foral T c T,},
Wy, = {weL*Q):wlr e W(T)forall T € T},
My, = {p€L*&): plreM(F)foral F e &},
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whereL?(Q) := (L2(Q))* and L2(&y) := M peg, L2(F).

Remark 2.1. Note that unlike the standard HDG method, we define the filet@ent space
W (T) with polynomials of degree at most+ 1. As we will soon see, this will yield higher
accuracy f + 2 instead ofp + 1) without any postprocessing.

For vector-valued functiona, v € (L*(D))*, we define(u,v)p = [, u-v. For scalar-
valued functions:, v € L*(D), let (u,v)p = [, uv, if the domainD is a subset oR*. If 9D
is inRF~1, we define(u, v),,, = [,,, uvds. Then, we introduce the following notation:

(w,v)7;, = ZTeﬁTh (w,v)r, (w,v)y o ZaTeaTh (w, v)or- (2.2)

With these finite element spaces and notations, we can géilting HDG formulation:
Find (up, qp,, 4p) € Wy, x V', x M}, such that

(aqyp,v)75, — (up,V-v)1,  + (Up,v - n>377L =0 Vv € Vi,
_(Qha Vw)Th + <€1h |, w>8’7’h = (f? w)Th Vw € Wh,
! (2.3)
(an - n7,u>a7’h\ag =0 Vi € My,
a, = 0 on of2.
We define the normal component of the numerical trace asafsllo
4, n=q,-n+7(Pyup — up) (2.4)

whereP; is the L2 —projection operator on the spasé,.

Remark 2.2. In our method, to define the nomal component of the numerae (2.4), we
consider thel.2—projection operator on the spade;, because oV (T)|r # M (F).

2.3. Matrix formulation. For implementation, we insert the normal component of thaem
ical trace in the third equation of (2.3), after some margpahs, obtain thatuy, g, i) €
Wi, x Vi, x Mj, is the solution of the following weak formulation.

a(gy,v) — blup,v) + c(up,v) = 0,
—b(w, qy) — d(Pyup,w) + e@nw) = —f(w), (2.5)
c(p, qp) + e(u, Poup) — g(p, ) = 0,

for all (w,v,pn) € Wy x Vi, x M. Here, the bilinear forms and the linear functional are
defined by

a(‘]»”) = (a(I> v)Tm b(uvv) = (uv V. ,v)Tha
-, d(u,w) = (w, Tu)sT;, (2.6)
e(psu) = (u, Twor,, 9w, u) = (u, Twor,, flw)=(f,w)y,

c(u,v) =(u,v-n)y

for all (u, g, u) and(w, v, u) INn Wy, x Vi x Mp,.



SUPERCONVEGENCE OF HDG METHOD FOR ELLIPTIC EQUATIONS 299

The discretization of the system of equations (2.5) giv@sto the following matrix equation
A -BT C7T Q

U | =-
U

-B -D FE

c ET G
Here Q,U and U are vectors of degrees of freedom fgy, uy,, anduy, respectively. The
matrices in (2.7) correspond to the bilinear forms in (208hie order they appear in the system
of equation (2.5).

Since the HDG method produces a final system in terms of diolbalpled degrees of
freedom of the numerical trace, (or 17) only, the first and second equation of (2.3) can be
used to remove both, anduy, in an element by element sense. Then, we obtain a reduced
globally coupled matrix equation just foF :

0
F 2.7)
0

KU =TF (2.8)
where !
L T A BT |7 [cC”
K=—[C E ]{_B e e
and

-B -D F

By solving the matrix equation (2.8), we get the valudofPluggingl back to the equation
(2.7), we obtair) andU as below :

B[ ST (] [F )

2.4. Solvability of the HDG method. Next, we discuss the stability and solvability of the
HDG method. Under some conditions for the stabilizatiorapaaterr, we derive the solvabil-
ity of the method.

r=to (4 5] (2]

Theorem 2.3. If 7 > 0 ondT for all T, then for anyf, the systenf2.3) has a unique solution.

Proof. Note that the system (2.3) is the square system by (2.7).ehasigh to show that the
homogeneous system( i.¢.,= 0) only has a trivial solution. Takéw,v, ) = (up, gy, un)
and by adding all equations, we get after some algebraicpukation, we get

(@qp,qp)7, — (@p - M —Gp -1y up — ah>aTh =0.
By the definition of the numerical traces (2.4) and the prypeflocal projection operataPy,
we have
(aqn, ap)7, + (T(Poun — Up), Poup — Un) sy, =0
and sincer > 0 we get
q, = 0, Pauh — ﬂh = 0. (2.9)
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Also, the first equation of (2.3) becomes
—(un, V- v)7, + (Unp,v-m)yr, =0, forall veVy.

Now we take this over an elemehtand by integrating by parts and using the property of local
projection operatoP;, we get

(Vup,v)r + (U, — Pyup,v-n)yp =0, foral veV(T).
SincePyuy, — uy, = 0, this becomes
(Vup,v)r =0 foral veV(T).

By takingv = Vuy, we conclude that, is piecewise constant on ea€h Since any interior
edgeF’ is shared by two neighboring elemefits and7~, u;, = C. Sinceu; = 0 on 92 and
Pyuy, — uyp, = 0, uy, up, andC should all be zero. O

3. ERROR ANALYSIS
On each elemerit, there exist local.>—projection operators
Iy : HY(T) - W(T) and TIly : Hy\(T) — V(T)

defined by:
(u,w)r = (Iyu,w)r foral weW(T),
(g,v)r = (Iyq,v)r foral veV(T).

3.1. Error equations. We begin by obtaining the error equations that will be usede error
analysis. The main idea is to work with the following projenterrors:

e, =1Ilyqg —qp, e, =Ilwu—uy, eg:=Pou—1u,.

Lemma3.1. We have

(cveq,v)7;, — (€4, V- v)T;, + (eu,'u Ny, = 0,
—(eq, Vw)7, +(q-n — Qh W = 0, 3.1)
(@ n—gq- #>a7’h = 0, '
(eanu>87’h = 07
for all (w,’u,,u) € Wp x Vi, x My,
Proof. The exact solutiortu, g) obviously satisfies
(aq,v)7, — (u,V-v)7;, + (u,v - n)or = 0,
(q7vw)77L <q n w>8’771 = ( 7w)7
(@-n M>afrh = 0,
< >aTh = 0,

for all (w,'v,,u) € Wy x Vi x My,
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By the definition of the projectiond Iy, Iy, Py), we can get

(oIIyq,v)7;, — (Iwu,V - v)7, + (Pou,v - ">8Th = 0,
—(Ilyq, Vw)7, +(q - n,w>a7—h = (f,w),

<q 'n, /‘L>8Th = 07

<P8U>N>a7’h = 0,

forall (w,v, n) € Wy, x Vi, x Mj,. Subtracting these equations defining the weak formulation
(2.3) from the above equation, respectively, we obtain ther @equations of Lemma 3.1. O

Lemma 3.2. We have
e, n—(qg-n—gq,-n)=Ilyqg-n—q-n—1(Pse, —eg) + Py(lIwu—wu). (3.2)

Proof. By the normal component of the numerical trace (2.4), we have

egn—(@g-n—q, n) = Ilyg-n—qg, n—q-n+gq, n+7(Pou, —up)
= Iyqg-n—q-n+7(Pyuy — up).
Also, we get
Pyuyp, — 1y, = Pyup + Pyu — Pyu + Pyllyyu — Pyllyyu — Uy,
= (Pou —1p) — Po(Ilwu — up) + Po(Ilyu — u)
= eg— Pyey + Py(Ilywu — u).
Therefore, we get the equation (3.2). a

3.2. Egimatefor g — q,. We define the weightedi?—norm as following:

I0llZ. = (av,v)7, and || wllZ a7, = (Tw,w)yg, - (3.3)

First we note the following standard estimates for the evroany triangl€l” and edgy/face
F CoT.

Proposition 3.3. If © and g are smooth functions, then we have

lu—wullp < CA* 2|ulpiar,

lg —yvqllr < Chkﬂl\qmw, (3.4)

lg — Pogllr < CR*"2|q|i1r.
Proof. See [17]. a
Lemma3.4. We have

lleg 2.0 + Il Poeu — ealll? o7, < S1+ Sz +Ss, (3.5)
where
1 1
S1 = Cr2h72|lu—lwullq - [|Pseu — ealllroT,

I R
S, Cr2h™2|lq — Ivdll - | Poeu — eallrom,
Sz = Chz|q — Paqllar, - || Veulla
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Proof. Takev = e4, w = e,, andu = eg in error equations (3.1) and by Lemma 3.2, we have
leq ”%79 + |l Poeu — €a||\3,aTh = (g-n—Ilyg-n,e, - €a>a771
+{(7(Po(u — Ilwu)), e — €a) s, -
Observe that
(T(Py(u — yyu)), e — eﬂ>8Th = (1(Py(u — wu)), Pye, — eg>a7—h
1 1
2 —1I 2(Pyey — u
<T2(U wu),72(Poey — e )>8Th

1 1
< COrzh72lu —wullo - [[[Poeu — e |

7,07 -
Also, we have

(g-n—Tlyqg-n,e, _eﬂ>87’h = (g-n—1Ilyq-n, Pye, _€ﬂ>a7'h
+{g-n—Ilyq -n,e, — Poeu)yr, -

Note that
1,1
(@-n—Ilyq-n, Pye, — eq)yy, < CT 2h2|lq —Ilvqlla - [ Poeu — eall-om
and
(@-n—1Ilyq-n,ew — Poeu)yy, = (q-n—Py(q-n)eu — Poeu)yy,
1
< Ch:§Hq - P@QH@T;L : ||eu - PﬁeuHQ
< Chz|lq - Paqllar, - [[Veulla-
Therefore, we get the inequality (3.5). O
Lemma 3.5. We have
11
[Veullo < C (|||eq a0 +77 207 2| Poey — 6@”7,871) : (3.6)

Proof. By the first equation of error equation (3.1) and integrabgrparts, we have
(aeq,v)7, + (Veu, v)7, + (ea — eu, v - n)yr, = 0.
Takev = Ve,. Then, we get

||VEUH%2 = —(aeq, Veu)T;, + (eu — €q, Vey - n>a7’h

—(aeq, Veu)7, + (Poeu — €3, Vey - M)y
_1

Cllleq oo IVeulla +772 I Poew — eq ||

1
o7, Ch™2||Veu|la.

IN

Therefore, we have

1,1
IVeullo < Cll g lllae +CT7 2072 ||| Poey — eg llIrom -

Theorem 3.6. We have

1543
70T, < 072711k+2|1u|k+2,9
+ Cr 2 2glii0 + ChF Y glega.

lle Mo + Il Poew — el a7
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Proof. By Lemmas 3.4, 3.5 and Proposition 3.3, we have

S = Crth™3|u—Twullo - Preu — ealllrom,
< CT%hk+%\U’k+2,Q | Poew — ezlllr.o7,
< O uleing - ey llao + I Poeu = eallrom)
S, = Ortitla—Tvalo P —call-or
< C’T_%hm% |qlk+1,0 - [Poeu — ealllrom,
< O ilglsna - (leg llas + Il Poeu = eallrom,)
and
Ss = Chz|lq— Pyqlar, - |Veullo
< Chk+1|Q|k+17Q ) <|||eq H .0 _|_7-_%h_% ’H Pye,, — €E|||T,877L)
< Ch*alrrrn - (lleg g + Il Poew — ealllrom,)

_1 1
+OT 202 qlsr - (lleg llag + Il Pocu — eal
Therefore, we have

T78771) N

1 3 _1 1
rofn < CTERM 2 uliig0+ CT 2R 2 glr 0
+Ch* g0

lleg lla.o + [l Poew — eqll

Corollary 3.7. If 7 = O (h™!), then we have

oty < CH ™ (Julksoo + lalii1e) - (3.8)

Remark 3.8. It is important to note that the stabilization parameteof the above Corollary
depends on a mesh size, i+ O(h~!). When we choose the value depending on a mesh size
O(h~1) as the stabilization parameter, we achieve the consistent order of convergence. If
this is not the case, the order of convergence is incongisiane the order of the stabilization
parameterr varies according to right-hand side terms from Theorem 3.6.

lleg lla.g + [l Poeu — eqll

3.3. Egtimate for v — uy. Next, we derive the result regarding the ertor ;. It is valid
under a typical elliptic regularity property. Lé, ¢) be the solution of the following dual
problem :

ad+Vo = 0, in Q
V-0 = e in Q (3.9
¢ = 0 on 09.

We assume that we have full?> —regularity,

[8ll20 + 10]l1,0 < Clleulla; (3.10)
whereC only depends on the domain
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Lemma 3.9. Assume that thé&/>—regularity (3.10)holds. Then, we have

(eu,eu)7;, = T1 + T2 — T, (3.11)
where
T1 == —(aeq, 0 — Hve)n,
TQ = (eu —ea,e-n—Hvo-n>8Th,
T3 = <eq'n_(Q‘”—ah'n)>P8¢—HW¢>aTh-
Proof. By the second equation of dual problem (3.9) and integrdiinparts, we get
(em eU)Th = (em V- 0)771

(em V- 0)771 - (etpao)ﬁ - (etp V¢)7—h
= (eu, V . Hve)n — (eq,aﬂve)Th — (eq, VHWqS)E
+(eu, V(6 — T1v8))7;, — (g, (8 — TIv0))7;, — (eq, V(¢ —Ilwo))7;
= (eg, IIy0- ”>aTh —(g-n—q,- n>HW¢>aTh + (eu, V- (6 — I1v0)) 7,
—(aeq, 0 — Hve)n — (eq, V(¢ — qub))ﬂi
We observe that
(eﬂv 0 - n>87’h =0 and (q "n = ah L P8¢>8’Th = 0.
Integrating by parts and the above result lead us to conchate
To—Ts = (e, HvO -n)yr, — (@ -n—G) nIlwe)yy,
+(eu; V- (8~ TLy0))7; — (eq, V(¢ — ),
= (eq,IIy0 - n>aTh —{g-n—gq,- n7HW¢>8’T,L
+ (€, 0 -n —I1y0 - n>a7’h —(eq-n, Py — HW¢>a7~h
= (ew—e7,0 -n—IIy0 n),r
—(eg-n — (q-n—ah'n%Pa(b—HW@aTh-

O
Lemma 3.10. Assume that thé&>—regularity (3.10)holds. Then, we have
Tl < Chllegllaaleala.
To| < Chllegllas lleulla+Cr72h2 || Poew = eqllnom leullo, (519
T3] < Ch**2lgliri0 - lleullo + CTh2 ||| Poey — ez ll7.07, “lleullo

+OTh ulii2,0 - lleullo-
Proof. We will estimate|T, |, |T2|, and|T3| separately, by using results from Lemma 3.9. First
we estimatgT .

T4 ((aeq, 0 — Ty 0)7, | < C |l eq llag -0 —TyO]o

Al

< Chllegllan -16llLa < Chlleqllan-llela-
Next, we estimate ofTz|.
Tof = [(eu—e,0-n—T1v8-n)y |

A

(Pyey — e3,0 -n — Iy 0 - n>8T;L

+ ‘(eu — Pyey, 0 -n—IIy0 -n),yr



SUPERCONVEGENCE OF HDG METHOD FOR ELLIPTIC EQUATIONS 305

Observe that

1.1
[(Poew — €00 -m —Tv0-myr | < O304 || Poeu — eq llam, 16 ~ Ty 6o
1.1
< Crihd || Poey — ez llrom 6]
< C77zh2 ||| Pgey — €3 |||T,a7—h ”euH97

and

(e, — Pyey,0 -n — Py(6 - n)>a7-h‘
Ch7Yle, — Poeulla - 1|0 — Iy 0|
Cllew — Poeulla - [10]11,0
Ch||Veu|la - [leullo
Chl €q ||1|a,Q [leullo
+CT72h2 ||| Poey — eq ||
Then, we get the second inequality. By Lemma 3.2, we have

Ty = (IIvg-n—g-n—7(Pe, —eg) + 7(Uwu —u), Pod — w7,
= (Ilvg-n—q-n—7(Pyey —eg) + T(wu —u), ¢ — lwe) oy,
+({IIyg-n—q-n—71(Psey — eq) + T(llwu —u), Padp — &)y -

‘(eu — Pyey,0 - — 11,0 - n>8T;L

INININIA

70T, “lleulla-

Observe that

= ‘(Pa(Q'n) - Q'na¢_HW¢>8Th‘
la — Pogllor, - ¢ — Uwollom,
Ch**2|qleria - h2|d)l20
Ch* 2 glit1,0 - leullos

‘<HVQ‘n_Q‘n7¢_HW¢>aTh

VA VANRVAN

IN

1
Ct2 || Poey — eg |7, -0 — Iw élla7;,

[(r(Poes — e2), 6 — Tw) o,
Cr2h% || Pyey — eq |

IN

70T lleulla,
and

‘<T(Hw’u, — u), (25 — HW¢>8771

< C7|llwu — ullog, - |6 — Tw ¢lla7;,

3 3
< CTh* 2 ulpin0 - h2|9ll2.0
< CThk+3’U‘k+2,Q |leullo-

_ 3
Since|| Pyp — ¢lla7;, < h2|leu|

a0, by combining the above estimates, we get the desired result
O

Theorem 3.11. Assume that thé/2—regularity (3.10) holds. Then, we have
lewlo < C (TERFE 4 7RFFS 1442 fuly .0

. ; (3.13)
+C (T_%thr% 4o lpkt fraphts 4 hk+2) k41,0
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Proof. By the Lemma 3.9, 3.10 and Theorem 3.6, we automaticallyhgeinequality. O
As a consequence of Theorem 3.11, we immediately have tlosvfoh estimate foe,,:

Corollary 3.12. Assume that thé/—regularity (3.10)holds. Ifr = O (h~1), then we have

leullo < CR*2 (Julkio0 + |@lki10) - (3.14)

Remark 3.13. Note that the main advantage of the proposed HDG method exsoipvergence

of problems without a local postprocessing. Achievemetttisfgoal depends on the value of
stabilization parameter in Corollary 3.12. When we choose the value depending on & mes
size,O(h~1), as the stabilization parameter, we achieve th¢p -+ 2)th convergence order of
the problem without the local postprocessing. However,nviber values are choosen, the
superconvergence may not be guaranteed.

4. NUMERICAL RESULTS

In this section, we present a numerical example to demdadtia accuracy and efficiency
of the proposed HDG method. We are mainly interested on ttieraf convergence when a
mesh size is refined. We study the error behavior originated from s&lgof the stabilization
parameterr.

We consider a numerical example in two dimensions. Sinyilastending the result to three
dimensions is simple. We also generate a structured tdatigi with nth subintervals in each
coordinate direction. We consider the following finite etathspaces in order to apply the
proposed HDG method/;, consists of piecewise linear, discontinuous functionggn\/;, of
piecewise linear, discontinuous functionstiyy andW), of piecewise quadratic, discontinuous
on7Ty,.

Example4.1. We consider the domain = (0,1)2, witha = 1 and7 = h~!. The source term
f(z,y) = —2z(x — 1) — 2y(y — 1) is selected in such a way that

u(,y) = ay(x—1)(y — 1)
is the exact solution of1.1).

Table 1 shows the convergence rates of the Example 4.1. e of convergence for
velocity g in weightedZ?—norm is two and the those for pressur@én L2—norm is three. This
matches well with the prediction in Corollaries 3.7 and 3.12

5. CONCLUSION

In this paper, we introduce a new hybrid discontinuous Galenethod for solving elliptic
equations. Comparing with the standard HDG method, thegsegh HDG method is advanta-
geous in three different aspects. First of all, under thenéwork of weak formulation, weak
formulation in our method just changes the finite elementespd; with polynomials with
degree one higher than those used in the standard HDG matkddatiéenumerical component
of the numerical trace considering projection operatort@;,. Despite this advantage, we
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TABLE 1. The order of convergence for= h !

g — gullo v — unllo
h Error Order Error Order
1/8 0.0227 e 0.0023 —

1/16 0.0056 | 2.019| 2.8434e-04 3.015
1/32 0.0014 | 2.000 | 3.5487e-05 3.002
1/64 || 3.4963e-04 2.001 | 4.4330e-06 3.000
1/128 || 8.7377e-05 2.000| 5.5397e-07 3.000

retain the merit of the standard HDG method such as reduofidegree of freedom and flex-

ibility since the changes we made do not affect the advantéglee standard HDG method.

Secondly, in high order accuracy, the standard HDG methquines a local postprocessing
for superconvergence, while our HDG method only needs tagdghe stabilization parame-

ter. Finally, error estimates can be derive by using ldZalprojecton when we perform error

analysis. In short, projection based analysis in our pregaaethod is both easier and more
convenient than the HDG-projection for the standard HDGhoeit Our numerical examples

and error analysis further demonstrate high order accuracy
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