• Title/Summary/Keyword: Discharging capacity

Search Result 143, Processing Time 0.023 seconds

STUDY ON ALGORITHM FOR CALCULATION REMAINING CAPACITY OF INDUSTRIAL LEAD-ACID BATTERY (산업용 연축전지의 잔존용량 산출 알고리즘(Algorithm)에 관한 연구)

  • Lim, Gyu-Ryeong;Chun, Soon-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2187-2189
    • /
    • 2001
  • The proposed algorithm has produced the rules of relationship between the load voltage, current, discharging electric power and ampere-hours, electric power capacity of battery on the basis of the data. Which were acquired through the battery discharging experiment that is defined by the battery's ambient temperature and various load conditions. Especially, by calculating the parameter of second order polynomial equation relation between the remaining capacity and the electric power, the algorithm is proposed adapting for the discharging pattern. And as the depth of discharging is increasing, the calculation-method of electric power is applied to decrease the accumulated error in the calculation method of capacity accumulation. Also, the proposed algorithm has compensated the temperature considering the capacity change of battery to the temperature.

  • PDF

Effect of Additional Pulse to Remove the Sulfate Film on the Charging Capacity in the Industrial Lead-Acid Battery (극판 피막 분해용 펄스파가 산업용 연축전지의 충전용량에 미치는 영향)

  • Choi, Kwang-Gyun;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.16 no.4
    • /
    • pp.40-44
    • /
    • 2020
  • In this study, after supplying a pulse wave to the 2 V Industrial Lead-Acid Battery electrode plate and repeating the charging and discharging, the discharging time per voltage was analyzed. According to the result of experiment, while the lead-acid Battery that a pulse wave is not supplied decreased about 18 % of discharging capacity than the beginning, the lead-acid Battery that a pulse wave is supplied decreased a little amount much lower than 18 %, of discharging capacity and recorded the 0.56 % decrease, at a minimum, from discharging capacity at the 20 kHz frequency. This means that the sulfate on electrode plate is detached and the positive and negative charge transfer is highly activated at the 20 kHz frequency

Design of a cycler system for large capacity lithium-polymer battery (중대형 리튬폴리머 2차전지용 충방전기 개발)

  • Oh Dong-Seob;Oh Sung-Up;Lee Jong-Yun;Park Min-Ho;Seong Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.82-86
    • /
    • 2004
  • In this paper, a cycler system for the Lithium-Polymer battery with the large capacity of 120Ah is presented. This system is constituted as the two units for the charging and discharging. The Lithium-Polymer battery should be charged in CC and CV mode, and it is required a very high precision control of the voltage and current for the charging unit. To decrease the switching noises and harmonics, parallel operation method is adopted and utilized in the power conversion module. The discharging unit has a link AC system function to return the discharging energy of battery to AC line and has comparatively less thermal loss. These units are designed to be controlled and monitored by personal computer. The total system for the battery charging and discharging is described and presented.

  • PDF

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.

Discharging/Charging Voltage-Temperature Pattern Recognition for Improved SOC/Capacity Estimation and SOH Prediction at Various Temperatures

  • Kim, Jong-Hoon;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recognition for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter measuremet.

Performance Investigation of Rotary Discharge Machine by Analytical Method (해석적 방법을 통한 Rotary Discharge Machine 의 성능 분석)

  • Jeong, Yeon Ho;Jung, Dae Man;Lee, Kwon Jae;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.965-970
    • /
    • 2016
  • Fuel used in the steel metallurgy industry is stored in huge stage systems called SILO. Fuel is released by RDM (Rotary Discharge Machine), at the place of utilization. RDM is located in the Silo, and is constituted of a main frame, driving part, discharging part and control part. RDM is combined to a direct motion on the rail in tunnel, having a rotary motion enabled by a motor. In this paper, we calculate the theoretical discharging capacity of RDM to confirm the correlation between design element and discharging capacity of RDM. Also, through structure analysis, we confirm the vulnerable point of RDM when it discharges the storage materials. We hope to apply these results to design a more efficient RDM.

Development of An Electric Circuit Model of Vehicle Charging-discharging System for Simulation (시뮬레이션을 위한 자동차 충 방전 시스템의 등가 회로 모델 개발)

  • Park, Hyun-Jin;SunWoo, Myoung-Ho;Lee, Jae-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.570-572
    • /
    • 1999
  • An equivalent circuit model of vehicle charging-discharging system for simulation is developed. The vehicle electric power system consists of alternator and battery. The alternator must have adequate capacity for providing electric energy to all loads, and the battery supports the alternator by offering insufficient energy when the alternator output energy is not enough. The alternator model is simplified for the use of characteristic curve, which was provided by its manufacturer, and the battery model is separated in charging mode and discharging mode because of its complex characteristics. Developed circuit model is validated by comparing the simulation data and real experimental data.

  • PDF

A Study on the Charging and Diagnosis System of xEV Reusable Waste Battery

  • Park, Sung-Jun;Kim, Chun-Sung;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.669-681
    • /
    • 2021
  • As the supply of xEV in Korea is rapidly increasing, the amount of waste batteries is expected to increase rapidly, but the current recycling system for waste xEV batteries is very insufficient. In order to properly utilize the xEV reusable battery module, it is essential to classify it into a type that has similar discharge characteristics to the current state of health(SOH), which is the discharge capacity of the battery. This paper proposes a system that can minimize the exchange of energy with the KEPCO system by using the charging/discharging method by circulating power between batteries in order to minimize the power consumption when charging and discharging waste batteries. In the proposed system, a function to measure parameters during the charging/discharging test of the waste battery was implemented to build a customized big date for the test waste battery. In addition, the dynamic characteristics of the proposed circuit were analyzed using PSIM, which is useful for power electronics analysis, and the validity of the proposed circuit was verified through experiments.

Study on Capacitance Decreasing Characteristics of Polymer Capacitor Depending on Temperature with Charging-Discharging Condition (고분자캐패시터에 대한 충방전 조건에서의 온도에 따른 정전용량감소 특성 연구)

  • Jeong, Ui-Hyo;Lim, Hong-Woo;Hyung, Jae-Phil;Ko, Min-Ji;Jung, Chang-Uk;Cho, Jeong-Ha;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • Purpose: Polymer capacitors are known to have very high reliability as compared with liquid electrolytic capacitors, but their capacity has been reported to decrease in charge and discharge at low temperature. The purpose of this study to clarify these characteristics. Methods: In order to clarify these characteristics, charging-discharging tests were carried out for 200 hours with three different capacities and at 5 different temperature from $5^{\circ}C$ to $100^{\circ}C$. Results: As a result of the test, it was confirmed that the capacity of the polymer capacitor was decreased with higher capacity and lower temperature. Conclusion: Such a failure phenomenon was caused by the shrinkage and expansion characteristics of the polymer used therein, it is presumed that this failure phenomenon is due to the complex pore structure made by etching.

Study of High-capacity Foam Discharging Systems for Full Surface Fire of Big Oil Tanks (대형 유류저장탱크 전면화재 대응을 위한 대용량포방사시스템 연구)

  • Im, Joo-Yeol;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.173-180
    • /
    • 2019
  • Oil tank fires need to be suppressed differently from other oil-related fires, due to the high-temperature flames and hot updraft above the tank, in the former case, that cause the destruction of large amounts of foam. We studied high-capacity foam discharge systems based on the standards of the American Petroleum Institute (API), National Fire Protection Association (NFPA), British Standard European Norm (BS EN), and the laws of Japan. The performance of a high-capacity foam discharge system was measured by conducting real fire experiments with model oil tanks. We concluded that lightweight and easily movable high-capacity foam discharge systems should be urgently introduced in domestic operations. Additionally, the obstacles faced by major tanks, such as long-distance installation of large-diameter fire hoses and narrowing of firefighting spaces, should be resolved depending on the conditions of the site.