• Title/Summary/Keyword: Dirichlet problem

검색결과 175건 처리시간 0.027초

EXISTENCE OF THE POSITIVE SOLUTION FOR THE NONLINEAR SYSTEM OF SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제21권3호
    • /
    • pp.339-345
    • /
    • 2008
  • We prove the existence of the positive solution for the nonlinear system of suspension bridge equations with Dirichlet boundary condition and periodic condition $$\{u_{tt}+u_{xxxx}+av^+=1+{\epsilon}_1h_1(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\v_{tt}+v_{xxxx}+bu^+=1+{\epsilon}_2h_2(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small numbers and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel}h_1{\parallel}={\parallel}h_2{\parallel}=1$.

  • PDF

MULTIPLICITY AND NONLINEARITY IN THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tack-Sun;Choi, Q-Heung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권3호
    • /
    • pp.161-169
    • /
    • 2008
  • We investigate the existence of solutions u(x, t) for perturbations of the elliptic system with Dirichlet boundary condition $$\array {L{\xi}+{\mu}g({\xi}+2{\eta})=f\;in\;{\Omega}}\\{L{\eta}+{\nu}g({\xi}+2{\eta})=f\;in\;{\Omega}}$$ (0.1) where $g(u)=Bu^+-Au^-$, $u^+=max\{u,\;0\}$, $u^-=max\{-u,\;0\}$, ${\mu}$, ${\nu}$ are nonzero constants and the nonlinearity $({\mu}+2{\nu})g(u)$ crosses the eigenvalues of the elliptic operator L.

  • PDF

AN APPLICATION OF CRITICAL POINT THEORY TO THE NONLINEAR HYPERBOLIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.149-165
    • /
    • 2007
  • We investigate the existence of multiple nontrivial solutions $u(x,t)$ for a perturbation $b[({\xi}-{\eta}+2)^+-2]$ of the hyperbolic system with Dirichlet boundary condition $$(0.1)\;L{\xi}={\mu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},\\L{\eta}={\nu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},$$, where $u^+$=max{u,o}, ${\mu}$, ${\nu}$ are nonzero constants. Here L is the wave operator in $\mathbb{R}^2$ and the nonlinearity $({\mu}-{\nu})[({\xi}-{\eta}+2)^+-2]$ crosses the eigenvalues of the wave operator.

  • PDF

EMPIRICAL BAYES ESTIMATION OF RESIDUAL SURVIVAL FUNCTION AT AGE

  • Liang, Ta-Chen
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.191-202
    • /
    • 2004
  • The paper considers nonparametric empirical Bayes estimation of residual survival function at age t using a Dirichlet process prior V(a). Empirical Bayes estimators are proposed for the case where both the function ${\alpha}$(0, $\chi$] and the size a(R$\^$+/) are unknown. It is shown that the proposed empirical Bayes estimators are asymptotically optimal at a rate n$\^$-1/, where n is the number of past data available for the present estimation problem. Therefore, the result of Lahiri and Park (1988) in which a(R$\^$+/) is assumed to be known and a rate n$\^$-1/ is achieved, is extended to a(R$\^$+/) unknown case.

UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.355-362
    • /
    • 2008
  • We prove the existence of a unique positive solution for a class of systems of the following nonlinear suspension bridge equation with Dirichlet boundary conditions and periodic conditions $$\{{u_{tt}+u_{xxxx}+\frac{1}{4}u_{ttxx}+av^+={\phi}_{00}+{\epsilon}_1h_1(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\{v_{tt}+v_{xxxx}+\frac{1}{4}u_{ttxx}+bu^+={\phi}_{00}+{\epsilon}_2h_2(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small number and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel} h_1{\parallel}={\parallel} h_2{\parallel}=1$. We first show that the system has a positive solution, and then prove the uniqueness by the contraction mapping principle on a Banach space

  • PDF

UNIQUENESS RESULTS FOR THE NONLINEAR HYPERBOLIC SYSTEM WITH JUMPING NONLINEARITY

  • Jung, Tack-Sung;Choi, Q-Heung
    • 호남수학학술지
    • /
    • 제29권4호
    • /
    • pp.723-732
    • /
    • 2007
  • We investigate the existence of solutions u(x, t) for a perturbation b[$(\xi+\eta+1)^+-1$] of the hyperbolic system with Dirichlet boundary condition (0.1) = $L\xi-{\mu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$, $L\eta={\nu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$ where $u^+$ = max{u,0}, ${\mu},\nu$ are nonzero constants. Here $\xi,\eta$ are periodic functions.

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권3호
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

Bayesian Multiple Comparisons for Normal Variances

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.155-168
    • /
    • 2000
  • Regarding to multiple comparison problem (MCP) of k normal population variances, we suggest a Bayesian method for calculating posterior probabilities for various hypotheses of equality among population variances. This leads to a simple method for obtaining pairwise comparisons of variances in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships among the variances. The method is derived from the fact that certain features of the hierarchical nonparametric family of Dirichlet process priors, in general, make it amenable to solving the MCP and estimating the posterior probabilities by means of posterior simulation, the Gibbs sampling. Two examples are illustrated for the method. For these examples, the method is straightforward for specifying distributionally and to implement computationally, with output readily adapted for required comparison.

  • PDF

개량역 자장간의 해석에 있어서 Neumann 및 Diichlet 경계조건을 고려한 유한요소법 및 경계적분법 (A Composite of FEM and BIM Dealing with Neumann and Dirichlet Boundary Conditions for Open Boundary magnetic Field Problems)

  • 정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제36권11호
    • /
    • pp.777-782
    • /
    • 1987
  • A new composite method of finite element and boundary integral methods is presented to solve the two dimensional magnetostatic field problems with open boundary. The method can deal with the current source of the boundary integral regin where the boundary integral method is applied, and also Neumann and Dirichlet boundary conditions at the interfacial boundary between the boundary integral region and the finite element region where the finite element method is applied. The new approach has been applied to a simple linear problem to verify the usefulness. It is shown that the proposed algorithm gives more accurate results than the finite element methed under the same elementdiscretization.

  • PDF

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.