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Bayesian Multiple Comparisons for Normal Variances

Hea-Jung Kim!

Abstract

Regarding to multiple comparison problem (MCP) of k normal popu-
lation variances, we suggest a Bayesian method for calculating posterior
probabilities for various hypotheses of equality among population variances.
This leads to a simple method for obtaining pairwise comparisons of vari-
ances in a statistical experiment with a partition on the parameter space
induced by equality and inequality relationships among the variances. The
method is derived from the fact that certain features of the hierarchical non-
parametric family of Dirichlet process priors, in general, make it amenable
to solving the MCP and estimating the posterior probabilities by means of
posterior simulation, the Gibbs sampling. Two examples are illustrated for
the method. For these examples, the method is straightforward for specify-
ing distributionally and to implement computationally, with output readily
adapted for required comparison.

Key Words and Phrases: Bayesian Multiple comparison; Posterior probabili-
ties of hypotheses; Dirichlet process priors; Hierarchical model; Pairwise posterior
probabilities; Gibbs sampler.

1. INTRODUCTION

In the literature, multiple comparisons problem (MCP) among k normal
means 61,05, ...,0; has been studied by many authors and various procedures
have been proposed, including Fisher’s least significant difference (LSD), Dun-
can’s multiple range test, Scheffé’s test, and so on. (for descriptions of these
procedures see Hochberg and Tamhane 1987). The Bayesian approaches to the
MCP can be found in Berry (1988) and Gopalan and Berry (1998). Appar-
ently, the MCP of k normal population variances is not discussed by many au-
thors. There are few published papers about the MCP due to Hsu (1977), Inclén
(1993), and Chen and Gupta (1997). They considered the MCP under the as-
sumption that k normal population means are common, 6, =0, = ... = 6.
However, the study about the MCP of k¥ normal population variances under un-
equal means has not been seen yet, in part because of the difficulty in handling
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the computations. The MCP that is associated with the variance change prob-
lem, plays an essential role in finance research to study the nonstationarity in
the parameters of the multi-factor market model (cf. Vostrikova 1981 and Chen
and Gupta 1997 and references within). In this article, we introduce Bayesian
approach to resolving the MCP of & normal population variances having unequal
means. As usual, the Bayesian approach is to condition on the observations in
updating one’s prior probability distribution. But assessing a prior distribution
and formulating a likelihood in the presence of large number N of hypotheses
(Hy:0l=0%=...=02 Hy:0f # 03,02 =02 =... =02, and so on up to
Hy : 0% # 02 # ... # o) make the Bayesian approach difficult. As the number
k of populations increases, the number of hypotheses increase exponentially. The
number of hypotheses as a function of & is given by the Bell exponential number
By, (cf. Berger 1971). The sequence {By} can be generated by the recursion
Bii1 =Xk xCiBi, k=0,1,2,..., where B =1and N = B, — 1 for k > 2.
Even for a reasonably small number of populations, such as ¥ = 5 and k = 6,
the number of hypotheses N to be considered (52 and 203) is very large. Thus,
the MCP of k normal population variances is tedious for moderate k and it is
practically impossible for large k. To circumvent this problem, in this article, the
hierarchical nonparametric family of Dirichlet process priors(DPP) introduced
by Ferguson (1973) is applied in the form of baseline prior/likelihood combina-
tions to obtain posterior probabilities for various hypotheses of equality among
population variances. Then we develop a numerical technique to calculate the
posterior probabilities of the hypotheses based on a hierarchical nonparametric
family of DPP.

2. MIXTURE OF DIRICHLET PROCESS MODEL

Mixture of Dirichlet Process models have become increasingly popular for
modeling when conventional parametric models would impose unreasonably stiff
constraints on the distributionally assumptions (such as finite mixture of distri-
butions). A list of applications can be found in MacEachren and Miiller (1998).
Despite of the large variety of applications, the core of the mixture of Dirich-
let process model can basically be thought of as a simple Bayes model given
by the likelihood and prior with added uncertainty about the prior distribution
G ~ D(aGy), where G ~ D(aG)) refers to G being a random distribution gen-
erated by a Dirichlet process with base measure aGy and total mass parameter
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«. The more complex models typically require another portion to the hierarchy
that allows the introduction of distributions on the hyperparameters a and Go.

2.1. Dirichlet Process Prior

Consider k normal populations with parameters (61, 71), (62, 72), - - -, (6k; Tk),
respectively, where 7; = 1/0?, i = 1,...,k. Let X = {X1,X>,...,Xx} are
observations available on these populations, where X; = (Zi1, Zi2, . .., Tin;) 18

a n; X 1 vector of conditionally independent observations on population ¢ =
1,...,k; j =1,...,n;. The multiple comparisons problem (MCP) of k variances
is to make inferences concerning relationships among the 7’s based on X. Let 2 =
{r = (11,72,.--,7k) : i € R, i =1,2,...,k} be the k-dimensional parameter
space. Equality and inequality relationships among the 7;’s induce statistical
hypotheses that subsets of &: Hy: Qo ={rns:mm=n=...= e}, Hi: = {n:
M#T,T="3=...=Tc},andsoonupto Hy : Qv ={ri: 1 # 2 # ... # 7% }.
The hypotheses (H, : Q,;7 =1,2,...,N), are disjoint, and 2 = UN Q.

For the prior distribution of k¥ normal population precisions, 7;’s, we use
the family of DPPs introduced by Ferguson (1973) and extended to mixtures
of DPP by Antoniak (1974). Certain features of this family make it amenable to
applications in the MCP.

Antoniak (1974) defines a C class and show that the DPP imposed on §} =
{71, 72, ..., 7k} has the property of assigning prior probabilities to the hypotheses,
which are subsets of the parameter space, induced by equality and inequality
relationships among the 7;’s.

Definition 1 (C class). Let 71, 72,..., 7x be a sample of size k from a
DPP. We will say that the sample belongs to the class C(my,mg,...,my), and
write (11, T2,..., Tx) € C(m1,mg,...,mg), if there are m; distinct values of 7
that occur only once, mo that occur exactly twice, ..., my that occur exactly k
times.

Two immediate consequences of this definition are that k = Zle im;, and
the total number of distinct values that occur is p = Zle m;. As an example
of this notation we note that Hy in the preceding discussion belongs to the class
C(0,0,...,1). The prior probability of a hypothesis of interest in terms of its C
class is given by the following proposition.

Proposition 1 (Antoniak, 1974). Let G ~ D(aGy) be a DPP on a standard
Borel space (2, A), with concentration parameter a > 0. Let 7y, 72,..., 7x be a
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sample of size k from D(aGy). Then

k! azf=1 i
P{(TI7T25""T/C) eC(ml,mg,...,mk)}= Hk imi(m~') Hk (a+z 1)
i=1 ¢ i=1 - )
(2.1)

The proposition yields prior probability of each hypothesis. For example,
P(Hy) and P(Hy) are a(k—1)!/TI¥ (e +i—1) and o/ [[5_, (a+i— 1), respec-
tively. This is a key feature of the model structure, and of its analysis, relates
to the discreteness of G(:) under the Dirichlet process assumption. Briefly, in
any sample Q = {71, 7y,...,7;} of size k from G(-) there is positive probability
of coincident values. Using the DPP for Bayesian inference requires choosing .
Gopalan and Berry (1998) suggests a method for choosing o based on the quan-
tities of P(Hp) and P(Hpy). Another consequence of this prior is that the prior
full conditional distributions of 7; can be expressed as follows (cf. Antoniak 1974
and Ferguson 1973)

Q) ~ aar_1Go(r) + ap-1 Y 6;(ms), (2.2)
J#i
where Q) = {r,... 7i_1,7iy1,... y Tk}, 6j(7;) denotes a unit point mass at 7; =

7; and a, = 1/(a+r) for positive integers r. The elements of §2 themselves behave
as described by (2.2) and so with positive probability, they will reduce to some
p < k distinct values. Let {7{,...,7;} denote the set of distinct 7;’s, where p < k
is the number of distinct elements in the vector 2. Let S = (S, S5, ..., Si) denote
the vector of configuration indicators defined by S; = j iff ; = =1,k
and let I; be the index set for those occurrences, I; = {i : S, =j}, j=1,...,p.
As an illustration, let k = 5 and S = {1,2,1,2,3}. Thenp =3, I; = {1,3},, =
{2,4} and Iy = {5}. We will term the “cluster” to refer to the set of all observation
X, or just the indexes i, or the corresponding 7;’s, with identical configuration
indicators Sj. Let nj is the size of the jth cluster: n} = [{i : S; = j}| with
;’:1 nj = k. Suppose that there are nj occurrences of 7;’s in group j that share
the common parameter value 7). Then (2.2) reduces to the mixture of fewer
components,

p®
7190, 80 p® ~ aar_1Go(n) + ap_1 > n;(i)‘si(’f;(i)), (2.3)

j=1

where S denotes the configuration of Q) into p(® distinct values with n;(i)

of them taking the common value T; (i), and (5,-(7'; (i)) is a unit point mass at
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T = T; @) The decomposition of (2.3) demonstrates the moderating effect of the

DPP, as new value of 7 only occur with probability cag—1.

2.2. Mixture of Dirichlet Process

Let X; = {X; : S; = j} be the corresponding group of ny; = Zite n;
observations. To proceed, we need to specify the prior mean Go(-) of G(-). A
convenient form is the normal/gamma conjugate to the normal sampling model;
thus, under Gy, we assume 'rZNGamma(s /2,V/2), a gamma prior with shape s/2
and scale V/2, so that dGo(;) o< 7; s/2-1 VT'/z and (6;|7;) ~ N(u;, (Br:)~1), for
some mean y;, ¢ = 1,...,k, and scale factor B ~ Gamma(¢,

1). Thus we have the following hierarchy of prior distributions:

Oilri ~ N{wi,(Br:)7"),
Go(rs) % Gamma(s/2,V/2),
GiGo ~ D(aGy),

T, T2y, Tk|G ud G,

and the hyperparameter 8 has gamma distribution

B ~ Gamma(¢,v).
The likelihood function is

L(6,9X) M T; 2 exp {-——2— Eﬁ:(xu - 91‘)2} .

A similar conditional (2.3) can be obtained a posteriori: given all other pa-
rameters and observations X = (X1, X, ..., X), the new value 7; is equal to 7,
h # i with probability g; & p(X;|6;,7r), or probability g0 a [ p(X;6;,
Ti)dGo(Ti) is a draw from dGi(Ti) x dGo(Ti)p(Xilei, Ti). The distribution G; is the
posterior in a simple Bayes model given by likelihood X; ~ p(X;|6;, 7;). Combin-
ing identical 74’s, and redefining ¢; j o n; A )p(X 6,77 ), the conditional posterior
of 7; is given by

o)
[r10®, 89 50,0, X] ~ 5 ¢i;6i(r7 ) + ¢:0Gi(m), (2.4)
=1

)
where g; 0 + Z;-’:l ¢,; =1 and

gio X a/ Ti(mﬂ)/z—l exp{~7i[V + 3_(zie — 6:;)%/2]}ds,
=1
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al{(n; + 5)/2}(V/2)*/2
@)/ 2{(V + TP, (zie — 6;)2)/2}+9)/2T{(5/2)}

gij o @m0 R exp{ -t Nai - 6)2/2), G =1,...,p%.(2.6)
=1

(2.5)

X

Note that sampling 7; implicitly samples a new configuration indicator S; such
that equation (2.4) implies conditional posterior probabilities for the configura-

tion indicators as
P(Sz :J|Q(z),s(z)ap(l)70) = ql,]a (27)

where § = {0y,...,0;}.
By use of the definition above, we can easily see that

R 174 n; . _0, 2
"’; ° +zf=12(m i) ) (2.8)

Gi(7;) = Gamma (

The conditional distributions (2.4) imply that 7; is a new parameter with proba-
bility ¢; o and is equal to another parameter otherwise. Therefore, once the Gibbs
sequence of simulation (described in the next section) from (2.4) has been run for
all 7, and p different values of 7; have been obtained, the actual distribution of
the sample X is indeed mixture of k normal distributions consisting of p clusters
of equal variance, although the generating component of each X; is well known.
This feature makes quite different with the usual mixture approach, as p varies
at each simulation step.

3. GIBBS SAMPLING SCHEME

MCMC implementation to estimate the mixture of Dirichlet process model
discussed in the previous section may be presented in terms of Steps 1 through
3.

Stepl. Given current values of Q* = {77,... T}, P < k, 0 and S, generate
a new configuration by sequentially sampling indicators from the posterior prob-
abilities (2.7), successively simulating and substituting Sy, ..., S for all index i
such that when S; = 0 draw a new 7; from G;(7;) in (2.8).

Step 2. Given p, S and Q*, resample 6;’s from the posterior distribution

nXi + By 1
ni+B ' (ni+p)7}

[e'ilp)S,Q*,ﬂ,X] ~ N( ) fOI‘ ZGI],
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where X; = Y7, ;. Then generate a new set of parameters Q* by sampling
each new 7; from the relevant component posterior

sV +w,
(719,50, X] ~ Gamma (252, 2220,

where w;j = 3. ¢p, Yoo (Tre — 0,)>.
Step 3. Generate the hyperparameter 8 from

P * 5 )2
[Blp, S,*,0,X] ~ Gamma (¢+ o+ j= 1(121521,» (6; — ps) )).

Return to Step 1, and proceed iteratively until convergence.

Although not explicitly included in model defined in Subsection 2.2, we would
include a hyperprior on the total mass @ of G and other parameters such as
pi's. For example sampling of o was described by Escobar and West (1995).
See also Liu (1996) for an alternative approach based on sequential imputation.
Sampling of other hyperparameters is typically straightforward, because, as in
Step 2 and 3, conditioning on the configuration S reduces the problem to a
conventional hierarchical model. The configurations S’s, resulted from successive
implementations of the algorithm, give the equality and inequality relation among
the 7;’s which correspond to the hypotheses for the MCP of k£ normal variances.
To estimate the posterior probability of a hypothesis H, from a large number (L)
of Gibbs samples, use

(H,|X) 25& (3.1)

where dg,(H,) denotes unit point mass for the case where ¢th draw of S, ie.
S¢, corresponds to H,. For the paired comparison among 71, 72,..., T, We may
use the approach to the MCP, suggested by Berry (1988), as an alternative to
classical procedures: The probability of equality for any two 7’s (equivalently
any two ¢2’s) can be calculated from the posterior distributions on hypotheses,
P(H.|X), r = 1,...,N. This can be achieved by adding probabilities of those
hypotheses in which the two 7’s are equal. That is

2

L
P( '—TJIX z Sy T‘L _T] z "‘lX 6H7‘ ""Tj)’ 1’7/'_.7, (32)

hl'—‘

where dg,(7; = 7;) and dg, (7 = 7;) denote unite point mass for the case where
Sy and H, indicate 7; = 7;, respectively.
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Convergence of the foregoing Gibbs sampling scheme can be easily established
as follows. Conditioning on the configuration S and p, the model in this article
reduces to the standard normal/gamma hierarchical model. Because the number
of configurations S’s is finite, proofs for the consistency of Markov chain Monte
Carlo estimates of the posterior p(€, 6, 5|X) and the posterior probability of H,
would be a simple extension of the proofs for the standard normal/gamma, hierar-
chical model. For the extension, we may use proofs similar to those contained in
Theorem 2 through Theorem 5 of Escobar and West (1995). The extension shows
that the above algorithm converges to a true posterior distribution for almost all
starting values.

4. ILLUSTRATIVE EXAMPLES

We consider two examples illustrating the suggested MCP method for k& nor-
mal variances. For the first example we use an artificial data set in order to
examine the performance of the Bayesian MCP method. Then a real data set
is applied for the second example. In both cases, via SAS/IML, we checked the
Gibbs sampler for convergence using parallel chains, as suggested by Gelman and
Rubin (1992) and Cowles and Carlin (1996). Convergence was achieved using
8 parallel chains with 1,000 burn-in iterations. We stored 1,500 iterations after
burn-in.

We used a number of values for o to help show the sensitivity of different prior
probabilities on the hypotheses Hy and Hy. The value of o are obtained from
the formula of the prior probability of each hypothesis in Proposition 1. Thus,
for given k and P(Hp), we calculate corresponding value of o form (2.1) and, in
turn, we obtain P(Hy) from (2.1) using the value of o.

4.1. An Artificial Data Example

To highlight the performance of the Bayesian MCP method, we consider the
following case for each set of five univariate normal distribution parameters: (i)
Population 1 : N(0,1); (ii) Population 2 : N(2,5); (iii) Population 3: N(-2,5);
(iv) Population 4: N(3,10); (v) Population 5 : N(-3,10), so that true hypothesis
is Hiyrye) : T1 # T2 = 73 # 74 = 75. Under the five distributions artificial data
set {X1, X2, X3, X4, X5} were generated and the Bayesian MCP method was
applied. For the Bayesian MCP method, we assume that each 7;, 4+ = 1,...,5
follows in priori Gamma(.05,.05) to reflect vagueness of the prior knowledge and
take piy = —1, o =1, ps = —1, pg = 1, ps = —1, ¢ = .05, and ¢ = .05.
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Table 1, summarizing the result of the simulation with ny =,...,=ns = 20,
presents posterior probabilities for each 18 possible hypotheses (remaining 34
hypotheses, having zero posterior probabilities, are deleted from the table). As
expected, the hypothesis Hsye) : 71 # T2 = T3 # T4 = T5 attains large posterior
probability (ranging from .423 to .706) compared to that of the other hypotheses.
This suggests that the data lend the greatest support to two equal pairs (79, 73)
and (74, 75) with 71 being different from others. Thus this example shows good
performance of the Bayesian MCP method for several normal variances.

Table 2 gives the posterior probabilities for equality of pairs of precisions. We
see that the highly plausible equality pairs (72, 73) and (74, 75) exactly match the
design of our simulation. As is evident in this table, posterior probabilities can
depend greatly on «, and thus careful assessment of o is important.

Table 1. Directly Calculated P(H,) and P(Hy) and Posterior

Probabilities
o
372 831 1.595 2,213 4.588 9.996 13.00
Prior Prob.

Hy:m=m=m=14=7Ts .500 .250 .100 ..055 .010 001 <.001
HN T ;ﬁ T2 -‘,'é 73 ;ﬁ T4 ;é Ts <.001 .005 .026 .055 .184 416 .500
Hypothesis Posterior Prob.
TI=T2=T3=T4=7Ts .000  .000 .000 .000 .000 .000 .000
M=Ta=T3F£T4aFTs .013 .015 .014 .012 .005 .003 .004
TI=T=Ts#T4a=Ts .320 178 .100 .063 .016 .006 .007
MATR=TsF#FT4a FTs .017 .053 101 115 .075 112 221
MIAETR=TI#FTa=Ts .590 616 706 .664 .508 457 423
MERFERATI=Ts .036 110 .046 132 223 377 291
METRFETR=Ts £ T4 .003 .005 .005 .002 .007 .001 .005
T1 ;é T2 = T4 -'/= T3 =/: T5 .000 .000 .000 .000 .000 .000 .001
M#ET=TsE£T3="T4 .000  .000 .000 .000 .001 .005 .001
TMFET=Ts=7Ts # T4 .001 .001 .002 .002 .001 .001 .003
1 =T2 9& T3 7’-’ T4 = Ts .001 .004 .002 .001 .003 .002 .002
M=T3FET2FTaF£Ts .002 .000 .004 .000 .004 .002 .002
M=T3£T#T4a=Ts .013 .020 .011 .009 .010 .005 .005
M=TsFET2F#T3F£T4 .000 .000 .000 .002 .001 .001 .001
MI=Ts#Te=Ts#£ T4 .001 .000 .000 .000 .002 .001 .001
TMI=T3=Ts£T2 #T4 .000 .001 .001 .000 .001 .002 .002

MERAETRAETLIHTS 007  .001 011 .003 147 .031 041




164 Hea-Jung Kim

Table 2. Pairwise Posterior Probabilities

a
Pair 372 .831 1.595 2.213 4.588 9.996 13.00

333 193 115 075 024 009 011

(71,72)

(r1,73) .346 .211 .129 .082 .038 .014 016
(r1,74) .000 .000 .000 .000 .000 .000 .000
(m1,75) .001 .001 .001 .000 .001 .001 .001
(r2,73) .941 .861 .923 .855 614 .585 657
(r2,74) .000 .000 .000 .000 .000 .001 .001
(12,75) .001 .001 .002 .002 .002 .006 .003
(3, 74) .000 .000 .000 .000 .000 .000 .000
(r3,75) .003 .001 .009 .004 .004 .006 .008
(14,75) .957 .926 .865 .866 .766 842 726

4.2. A Real Data Example

Steel and Torrie (1981) reported an experiment measuring nitrogen content
in milligrams of red clover plants innoculated with cultures of Rhizobium trifolli
plus a composite of five Rhizobium meliloti strains. The treatments were each
of five red clover cultures R. trifolli tested individually with a composite of five
alfalfa strains (Treatment 1, ..., Treatment 5), R. meliloti, and a composite of
red clover strains also tested with a composite of the alfalfa strains, making six in
all. The experiment was conducted in a greenhouse using completely randomized
design with five pots per treatment. The objective is to compare variances of the
nitrogen for different treatments. Table 3 gives the data.

Table 3. Rhizobium Data

Treatments treat. 1 treat. 2 treat. 3 treat. 4 treat. 5 composite

14.3 17.0 20.7 17.7 19.4 17.3
14.4 19.4 21.0 24.8 32.6 19.4
11.8 9.1 20.5 27.9 27.0 19.1
11.6 11.9 18.8 25.2 32.1 16.9
14.2 15.8 18.6 24.3 33.0 20.8
Mean 13.26 14.64 19.92 23.98 28.82 18.70

SD 1.43 4.12 1.13 1.60 3.78 5.80
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We assume that each 7;, i = 1,...,6, follows in priori Gamma(.05,.05) to
reflect vagueness of the prior knowledge. We take u; = 14, po = 15, p3 = 20,
pe = 24, ps = 29, pe = 19, ¢ = .05, and ¥ = .05. The number of possible
hypotheses for the MCP is 203. Thus, to save the space, we notes the prior
probabilities of Hy and Hy and posterior probabilities for five highly plausible

hypotheses across different values of o in Table 4.

Table 4. Posterior Probabilities of Five Highly Plausible Hypotheses

a

334 1373 1.956 2.605 3.462 4.909 19.88

Prior Prob.
Hy .500 .100 .050 .026 .012 004 <.001
Hy <.001 .004 .012 .026 .050 .100 .500

Hypothesis Posterior Prob.
MM=Te=T3=T4=T5=7T¢ .139 .459 .340 234 192 157 .021
TI=To=Ts=Ts =Te ¥ T4 .015 .035 .020 .024 .023 .033 .033
I =T =Ts=Te £ T3 =T4 .012 .021 .018 .032 .027 .041 023
TI=T3=T4F£ T2 =75 =Te .168 .294 410 .440 494 457 .262
n=nFn=m=1=1 .021 .028 .055 .040 .049 .046 .029

Table 5. Pairwise Posterior Probabilities

[0
Pair  .334 1.373 1956 2.605 3.462 4.909 19.88
(r,72) .786 563 434 361 .301 279 .125
(r,7s) 950 .884 .868 .828 .832 .781  .638
(m,7) .957 .894 894 848 851 .786  .638
(r,75) .792 572 442 376 310 302 .144
(r,76) .775 544 408 332 280 .250 .113
(ro,73) 792 592 476 401 328 .295 .168
(rp,74) .768 536 .394 315 256 .209 .069
(rp,75) 982 955 940 916 .928 .900  .736
(rp,76) .891 932 930 .904 912 .887  .708
(rs,74) .947 878 866 .831 .841 .792  .630
(rs5,75) .802 .601 490 .418 .343 316  .192
(r3,76) .786 .563 454 370 300 .270  .138
(r4,75) 774 540 408 336 267 .228 .01
(re,76) .758 510 372 284 233 .181 .041
(r5,76) .977 936 .923 .908 910 .878  .732
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Table 5 gives the pairwise posterior probabilities for all pairs. In case we take
a natural choice, i.e. the same prior probabilities of Hy and Hy with o = 2.605,
Table 4 notes that the hypothesis F : 71 = 73 = 74 # T3 = 75 = 7¢ is the most
plausible model among 203 hypotheses. Table 5 also gives the same implication
that each of precision pairs (71,74), (72,75), (72,76), and (75,7¢) is equal with
high posterior probability. The tables notes that the smaller value of o leads to
the larger probability of homogeneity among 6 variances and vice versa. This
sensitiveness of the Bayesian MCP method is also revealed in Table 1 and Table
2.

5. CONCLUDING REMARKS

We have considered the problem of developing a Bayesian multiple compar-
ison for variances (or precisions) of ¥ normal populations with unequal means.
As an alternative to a formal Bayesian analysis of a mixture model that usually
leads to intractable calculations, the Dirichlet prior process is used to provide a
nonparametric Bayesian method for obtaining posterior probabilities for various
hypotheses of equality among population variances. Finding posterior distribu-
tions is analytically intractable so that we solve the computational difficulty by
developing a Gibbs sampler algorithrn. As usual, the suggested Bayesian method
allows for direct probability calculations of hypotheses of equality and inequality
among population variances. The method that we propose has some. flexibility
in assignment of prior probabilities, because we can easily assess them via equa-
tion (2.1) with given any number of populations k¥ and P(Hy). If we don’t have
information about P(Hp), we may set up more complex model which require
another portion to the hierarchy that allows the introduction of distributions on
the hyperparameters a.

An extension of the method to the multiple comparison problem for the mul-
tivariate normal populations would be accomplished straightforwardly. The re-
search topics pertaining to the extension of the method and the examination of
its performance are worthy to study and are left as a future subject of research.

ACKNOWLEDGEMENTS
The author would like to thank the editor and the refrees whose comments

helped him a great deal in the revision. This paper was supported by a grant
from Dongguk University, Korea.



Bayesian Multiple Comparisons for Normal Variances 167

REFERENCES

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with application to
Bayesian nonparametric problems, The Annals of Statistics, Vol. 2, 1152-
1174.

Berry, D. A. (1988). Multiple comparisons, multiple tests and data dredging:
a Bayesian perspective, Bayesian Statistics 3, Eds. by Bernardo, J. M. et
al., Oxford University Press.

Chen, J. and Gupta, A. K. (1997). Testing and locating variance change points
with application to stock prices, Journal of the American Statistical Asso-
ciation, Vol. 92, 739-747.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence
diagnostics: a comparative review, Journal of the American Statistical As-
sociation, 91, 883-904.

Escorbar, M. D. and West, M. (1995). Bayesian density estimation and infer-
ences using mixtures, Journal of the American Statistical Association, Vol.
90, 577-588.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems,
The Annals of Statistics, Vol. 1, 209-230.

Gopalan, R. and Berry, D. A. (1998). Bayesian multiple comparisons using
Dirichlet process prior, Journal of the American Statistical Association,
Vol. 93, 1130-1139.

Hochberg, T. and Tamhane, A. C. (1987). Multiple Comparison Procedures,
New York: Wiley.

Hsu, D. A. (1977). Tests of variance shifts at an unknown time point, Applied
Statistics, Vol. 26, 179-184.

Inclén, C. (1993). Detection of multiple changes of variance using posterior
odds, Journal of Business and Economic Statistics, Vol. 11, 189-300.

Liu, J. (1996). Nonparametric hierarchical Bayes via sequential imputations,
The Annals of Statistics, Vol. 24, 911-930.



168 Hea-Jung Kim
MacEachern, S. N. and Miiller, P. (1998). Estimating mixture Dirichlet process
models, Journal of Computational and Graphical Statistics, Vol. 7, 223-238.

Vostrikova, L. J. (1981). Detecting disorder in multidimensional random pro-
cesses, Soviet Mathematics Doklady, Vol. 24, 55-59.



