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ABSTRACT. We investigate the existence of solutions u(x, t) for perturbations of the elliptic
system with Dirichlet boundary condition

Lξ + µg(ξ + 2η) = f in Ω,

Lη + νg(ξ + 2η) = f in Ω,
(0.1)

where g(u) = Bu+−Au−, u+ = max{u, 0}, u− = max{−u, 0}, µ, ν are nonzero constants
and the nonlinearity (µ + 2ν)g(u) crosses the eigenvalues of the elliptic operator L.

1. INTRODUCTION

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let L denote the differential
operator

L =
∑

1≤i,j≤n

∂

∂xi
(aij

∂

∂xj
),

where aij = aji ∈ C∞(Ω̄). In [2] the authors investigate multiplicity of solutions of the
nonlinear elliptic equation with Dirichlet boundary condition

Lu + g(u) = f(x) in Ω,

u = 0 on ∂Ω,
(1.1)

where the semilinear term g(u) = bu+−au− and L is a second order linear elliptic differential
operator and a mapping from L2(Ω) into itself with compact inverse, with eigenvalues −λi,
each repeated according to its multiplicity,

0 < λ1 < λ2 < λ3 ≤ · · · ≤ λi ≤ · · · → ∞.
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Here the source term f is generated by the eigenfunctions of the second order elliptic operator
with Dirichlet boundary condition.

In [5, 7, 8], the authors have investigated multiplicity of solutions of (1.1) when the forcing
term f is supposed to be a multiple of the first eigenfunction and the nonlinearity−(bu+−au−)
crosses eigenvalues. In [4], the authors investigated a relation between multiplicity of solutions
and source terms of (1.1) when the forcing term f is supposed to be spanned two eigenfunction
φ1, φ2 and the nonlinearity −(bu+ − au−) crosses two eigenvalues λ1, λ2.

In this paper we investigate the existence of solutions u(x, t) for perturbations of the elliptic
system with Dirichlet boundary condition

Lξ + µ(B(ξ + 2η)+ −A(ξ + 2η)−) = f in Ω,

Lη + ν(B(ξ + 2η)+ −A(ξ + 2η)−) = f in Ω,

ξ = 0, η = 0 on ∂Ω,

(1.2)

where u+ = max{u, 0}, u− = max{−u, 0}, µ, ν are nonzero constants and the nonlinearity
(µ + 2ν)(B(ξ + 2η)+ −A(ξ + 2η)−) crosses the eigenvalues of the elliptic operator L.

Equation (1.1) and the following type nonlinear equation with Dirichlet boundary condition
was studied by many authors:

Lu = b[(u + 2)+ − 2] in Ω,

u = 0 on ∂Ω.
(1.3)

In [9] Lazer and McKenna point out that this kind of nonlinearity b[(u + 2)+ − 2] can
furnish a model to study traveling waves in suspension bridges. So the nonlinear equation
with jumping nonlinearity have been extensively studied by many authors. For fourth elliptic
equation Tarantello [14] , Micheletti and Pistoia [11][12] proved the existence of nontrivial
solutions used degree theory and critical points theory separately. For one-dimensional case
Lazer and McKenna [10] proved the existence of nontrivial solution by the global bifurcation
method. For this jumping nonlinearity we are interest in the multiple nontrivial solutions of the
equation. Here we used variational reduction method to find the nontrivial solutions of problem
(1.2).

The organization of this paper is as following. In section 2, we have a concern with a relation
between multiplicity of solutions and source terms of a nonlinear elliptic equation when the
nonlinearity crosses eigenvalues. We investigate the uniqueness and multiplicity of solutions
for the single nonlinear elliptic equation. In section 3, we investigate the uniqueness and the
existence of multiple solutions u(x, t) for the elliptic system with Dirichlet boundary condition
when the nonlinearity (µ + 2ν)(Bu+ −Au−) crosses the eigenvalues of the elliptic operator.

2. A SINGLE NONLINEAR ELLIPTIC EQUATION

We have a concern with a relation between multiplicity of solutions and source terms of a
nonlinear elliptic equation

Lu + bu+ − au− = f in L2(Ω). (2.1)
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Here we suppose that the nonlinearity −(bu+ − au−) crosses eigenvalues. We consider three
cases: The nonlinearity crosses no eigenvalue; the nonlinearity crosses the eigenvalue λ1; the
nonlinearity crosses the eigenvalues λ1, λ2.

Let us denote an element u, in H0, as u =
∑

hjφj and we define a subspace H of H0 as

H = {u ∈ H0 :
∑

|λj |h2
j < ∞}.

Then this is a complete normed space with a norm ‖u‖ = (
∑ |λmn|h2

mn)
1
2 . If f ∈ H0 and a, b

are not eigenvalues of L, then every solution in H0 of Lu + bu+ − au− = f belongs to H (cf.
[2]).

Case 1) The nonlinearity crosses no eigenvalue
We suppose that the nonlinearity −(bu+ − au−) crosses no eigenvalue, that is, a, b < λ1.

By the contraction mapping principle we have the following uniqueness theorem.

Theorem 2.1. Let a, b < λ1 and f ∈ H0. Then equation (2.1) has a unique solution in H .

Case 2) The nonlinearity crosses the eigenvalues λ1, λ2.
We suppose that the nonlinearity −(bu+ − au−) crosses two eigenvalues λ1, λ2, i.e., a <

λ1 < λ2 < b < λ3. We have a concern with a relation between multiplicity of solutions and
source terms of a nonlinear elliptic equation

Lu + bu+ − au− = f in L2(Ω). (2.1)

Here we suppose that f is generated by two eigenfunctions φ1 and φ2.
Let V be the two dimensional subspace of L2(Ω) spanned by {φ1, φ2} and W be the or-

thogonal complement of V in L2(Ω). Let P be an orthogonal projection L2(Ω) onto V . Then
every element u ∈ H is expressed by

u = v + w,

where v = Pu, w = (I − P )u. Hence equation (2.1) is equivalent to a system

Lw + (I − P )(b(v + w)+ − a(v + w)−) = 0, (2.2)

Lv + P (b(v + w)+ − a(v + w)−) = s1φ1 + s2φ2. (2.3)

Lemma 2.1. For fixed v ∈ V , (2.2) has a unique solution w = θ(v). Furthermore, θ(v) is
Lipschitz continuous (with respect to L2 norm) in terms of v.

The proof of the lemma is similar to that of Lemma 2.1 of [3].
By Lemma 2.1, the study of multiplicity of solutions of (2.1) is reduced to that of an equiv-

alent problem
Lv + P (b(v + θ(v))+ − a(v + θ(v))−) = s1φ1 + s2φ2 (2.4)

defined on the two dimensional subspace V spanned by {φ1, φ2}.
We note that if v ≥ 0 or v ≤ 0 then θ(v) ≡ 0.
Since the subspace V is spanned by {φ1, φ2} and φ1(x) > 0 in Ω, there exists a cone C1

defined by
C1 = {v = c1φ1 + c2φ2 : c1 ≥ 0, |c2| ≤ kc1}
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for some k > 0 so that v ≥ 0 for all v ∈ C1 and a cone C3 defined by

C3 = {v = c1φ1 + c2φ2 : c1 ≤ 0, |c2| ≤ k|c1|}
so that v ≤ 0 for all v ∈ C3.

We define a map Φ : V → V given by

Φ(v) = Lv + P (b(v + θ(v))+ − a(v + θ(v))−), v ∈ V. (2.5)

Then Φ is continuous on V, since θ is continuous on V and we have the following lemma (cf.
Lemma 2.2 of [3]).

Lemma 2.2. Φ(cv) = cΦ(v) for c ≥ 0 and v ∈ V .

Lemma 2.2 implies that Φ maps a cone with vertex 0 onto a cone with vertex 0. We set the
cones C2, C4 as follows

C2 = {c1φ1 + c2φ2 : c2 ≥ 0, c2 ≥ k|c1|},
C4 = {c1φ1 + c2φ2 : c2 ≤ 0, c2 ≤ −k|c1|}.

Then the union of four cones Ci (1 ≤ i ≤ 4) is the space V.
We investigate the images of the cones C1 and C3 under Φ. First we consider the image of

the cone C1. If v = c1φ1 + c2φ2 ≥ 0, we have

Φ(v) = L(v) + P (b(v + θ(v))+ − a(v + θ(v))−)
= −c1λ1φ1 − c2λ2φ2 + b(c1φ1 + c2φ2)
= c1(b− λ1)φ1 + c2(b− λ2)φ2.

Thus the images of the rays c1φ1 ± kc1φ2(c1 ≥ 0) can be explicitly calculated and they are

c1(b− λ1)φ1 ± kc1(b− λ2)φ10 (c1 ≥ 0).

Therefore Φ maps C1 onto the cone

R1 =
{

d1φ00 + d2φ10 : d1 ≥ 0, |d2| ≤ k

(
b− λ2

b− λ1

)
d1

}
.

The cone R1 is in the right half-plane of V and the restriction Φ|C1 : C1 → R1 is bijective.
We determine the image of the cone C3. If v = −c1φ1 + c2φ2 ≤ 0, we have

Φ(v) = L(v) + P (b(v + θ(v))+ − a(v + θ(v))−)
= Lv + P (av)
= −c1(−λ1 + a)φ1 + c2(−λ2 + a)φ2.

Thus the images of the rays −c1φ00± kc1φ2 (c1 ≥ 0) can be explicitly calculated and they are

−c1(−λ1 + a)φ1 ± kc1(−λ2 + a)φ2 (c1 ≥ 0).
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Thus Φ maps the cone C3 onto the cone

R3 =
{

d1φ1 + d2φ2 : d1 ≥ 0, d2 ≤ k|λ2 − a

λ1 − a
||d1|

}
.

The cone R3 is in the right half-plane of V and the restriction Φ|C3 : C3 → R3 is bijective. We
note that R1 ⊂ R3 since a < λ1 < λ2 < b < λ3.

Theorem 2.2. If f belongs to R1, then equation (2.1) has a positive solution and a negative
solution.

Lemma 2.2 means that the images Φ(C2) and Φ(C4) are the cones in the plane V. Before
we investigate the images Φ(C2) and Φ(C4), we set

R′
2 =

{
d1φ1 + d2φ2 : d1 ≥ 0,−k

∣∣∣∣
λ2 − a

λ1 − a

∣∣∣∣ d1 ≤ d2 ≤ k

∣∣∣∣
λ2 − b

λ1 − b

∣∣∣∣ d1

}
,

R′
4 =

{
d1φ1 + d2φ2 : d1 ≥ 0,−k

(
λ2 − b

λ1 − b

)
d1 ≤ d2 ≤ k

(
λ2 − a

λ1 − a

)
d1

}
.

We note that all the cones R′
2, R3, R′

4 contains R1. R3 contain R1, R′
2, R′

4.
To investigate a relation between multiplicity of solutions and source terms in the nonlinear

equation
Lu + bu+ − au− = f in H, (2.6)

we consider the restrictions Φ|Ci(1 ≤ i ≤ 4) of Φ to the cones Ci. Let Φi = Φ|Ci , i.e.,

Φi : Ci → V.

For i = 1, 3, the image of Φi is Ri and Φi : Ci → Ri is bijective.

Lemma 2.3. For every v = c1φ1 + c2φ2, there exists a constant d > 0 such that

(Φ(v), φ1) ≥ d|c2|.
For the proof see [2].
From now on, our goal is to find the image of Ci under Φi for i = 2, 4. Suppose that γ is

a simple path in C2 without meeting the origin, and end points (initial and terminal) of γ lie
on the boundary ray of C2 and they are on each other boundary ray. Then the image of one
end point of γ under Φ is on the ray c1(b − λ1)φ1 + kc1(b − λ2)φ2, c1 ≥ 0 (a boundary ray
of R1) and the image of the other end point of γ under Φ is on the ray −c1(−λ1 + a)φ1 +
kc1(−λ2 + a)φ10, c1 ≥ 0 (a boundary ray of R3). Since Φ is continuous, Φ(γ) is a path in V.
By Lemma 2.2, Φ(γ) does not meet the origin. Hence the path Φ(γ) meets all rays (starting
from the origin) in R′

2.
Therefore it follows from Lemma 2.3 that the image Φ(C2) of C2 contains R′

2.
Similarly, we have that the image Φ(C4) of C4 contains R′

4.
If a solution of (2.1) is in IntC1, then it is positive. If a solution of (2.1) is in IntC3, then it

is negative. If it is in Int(C2∪C4), then it has both signs. Therefore we have the main theorem
of this section.
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Theorem 2.3. Let a < λ1 < λ2 < b < λ3. Let v = c1φ1 + c2φ2. Then we have the followings.
(i) If f ∈ Int R1, then equation (2.1) has a positive solution, a negative solution, and at least
two solutions changing sign.
(ii) If f ∈ ∂R1, then equation (2.1) has a positive solution, a negative solution, and at least
one solution changing sign.
(iii) If f ∈ Int(R3\R1), then equation (2.1) has a negative solution and at least one solution
changing sign.
(iv) If f ∈ ∂R3, then equation (2.1) has a negative solution.

Case 2) The nonlinearity crosses the eigenvalue λ1

We suppose that the nonlinearity −(bu+ − au−) crosses the eigenvalues λ1, i.e., a < λ1 <
b < λ2. Then it is easy to prove the following theorem.

Theorem 2.4. Let a < λ1 < b < λ2 and f = αφ1. Then we have the followings.
(i) If α > 0, then equation (2.1) has a positive solution and a negative solution.
(ii) If α < 0, then equation (2.1) has no solution.

3. MULTIPLE SOLUTIONS FOR THE ELLIPTIC SYSTEM

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let L denote the differential
operator

L =
∑

1≤i,j≤n

∂

∂xi
(aij

∂

∂xj
),

where aij = aji ∈ C∞(Ω̄). In this section we investigate the existence of solutions u(x, t) for
perturbations of the elliptic system with Dirichlet boundary condition

Lξ + µg(ξ + 2η) = f in Ω,

Lη + νg(ξ + 2η) = f in Ω,

ξ = 0, η = 0 on ∂Ω,

(3.1)

where g(u) = Bu+ − Au−, u+ = max{u, 0}, u− = max{−u, 0}, µ, ν are nonzero constants
and the nonlinearity (µ + 2ν)g(u) crosses the eigenvalues of the elliptic operator L.

Here we assume that −7 < µ− ν < −3.
We suppose that the nonlinearity (µ + 2ν)g(u) crosses no eigenvalue of L, that is, (µ +

2ν)A, (µ + 2ν)B < λ1. By the contraction mapping principle we have the following unique-
ness theorem.

Theorem 3.1. Let µ, ν be nonzero constants and 2 + µ
ν 6= 0. Assume that (µ + 2ν)A, (µ +

2ν)B < λ1. and f ∈ H0. Then elliptic system (3.1) has a unique solution (ξ, η).

Proof. From problem (3.1) we get that Lξ−f = µ
ν (Lη−f). By Theorem 2.1, for any F ∈ H0

the problem
Lu = F in Ω,

u = 0 on ∂Ω,
(3.2)
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has a unique solution. If u1−µ
ν

is a solution of L(ξ − µ
ν η) = (1− µ

ν )f , then the solution (ξ, η)
of problem (3.1) satisfies

ξ − µ

ν
η = u1−µ

ν
. (A)

On the other hand, from problem (3.1) we get the equation

L(ξ + 2η) + (µ + 2ν)g(ξ + 2η) = 3f in Ω,

ξ = 0, η = 0 on ∂Ω.
(3.3)

Put w = ξ + 2η. Then the above equation is equivalent to

Lw + (µ + 2ν)g(ξ + 2η) = 3f in Ω,

w = 0 on ∂Ω.
(3.4)

When (µ+2ν)A, (µ+2ν)B < λ1, by Theorem 2.1 the above equation has a unique solution,
say w1. Hence we get the solutions (ξ, η) of problem (3.1) from the following systems:

ξ − µ

ν
η = u1−µ

ν
,

ξ + 2η = w1.
(3.5)

Since 2 + µ
ν 6= 0, system (3.5) has a unique solution (ξ, η). ¤

Theorem 3.2. Let µ, ν be nonzero constants and 2 + µ
ν 6= 0. Assume that µ + 2ν)A < λ1 <

λ2 < (µ + 2ν)B < λ3 and f = c1φ1 + c2φ2. Then we have the followings.
(i) If f ∈ Int R1, then system (3.1) has a positive solution, a negative solution, and at least
two solutions changing sign.
(ii) If f ∈ ∂R1, then system (3.1) has a positive solution, a negative solution, and at least one
solution changing sign.
(iii) If f ∈ Int(R3\R1), then system (3.1) has a negative solution and at least one solution
changing sign.
(iv) If f ∈ ∂R3, then system (3.1) has a negative solution.

Proof. (i) From problem (3.1) we get that Lξ − f = µ
ν (Lη − f). By Theorem 2.1, for any

F ∈ H0 the problem
Lu = F in Ω,

u = 0 on ∂Ω
(3.6)

has a unique solution. If u1−µ
ν

is a solution of L(ξ − µ
ν η) = (1− µ

ν )f , then the solution (ξ, η)
of problem (3.1) satisfies

ξ − µ

ν
η = u1−µ

ν
. (A)

On the other hand, from problem (3.1) we get the equation

L(ξ + 2η) + (µ + 2ν)g(ξ + 2η) = 3f in Ω,

ξ = 0, η = 0 on ∂Ω.
(3.7)



168 TACKSUN JUNG AND Q-HEUNG CHOI

Put w = ξ + 2η. Then the above equation is equivalent to

Lw + (µ + 2ν)g(w) = 3f in Ω,

w = 0 on ∂Ω,
(3.8)

where g(w) = Bw+ −Aw− and the nonlinearity (µ + 2ν)g(w) crosses the eigenvalues of the
elliptic operator L. When (µ + 2ν)A < λ1 < λ2 < (µ + 2ν)B < λ3 and f ∈ Int R1, by
Theorem 2.3 (i) the above equation has a positive solution wp, a negative solution wn, and at
least two solutions changing sign wc1 , wc2 .

Hence we get the solutions (ξ, η) of problem (3.1) from the following systems:

ξ − µ

ν
η = u1−µ

ν

ξ + 2η = wp

(3.9)

ξ − µ

ν
η = u1−µ

ν

ξ + 2η = wn

(3.10)

ξ − µ

ν
η = u1−µ

ν

ξ + 2η = w1

(3.11)

ξ − µ

ν
η = u1−µ

ν

ξ + 2η = w1.
(3.12)

Since 2 + µ
ν 6= 0, system (3.9) has a unique solution (ξ1, η1) with ξ1 + 2η1 > 0. From (3.10)

we get the solution (ξ2, η2) with ξ2 +2η2 < 0. From (3.11), (3.12) we get the solution (ξ3, η3),
(ξ4, η4), where ξi + 2ηi(i = 1, 2) are changing sign.

Therefore system(3.1) has at least four solutions.
By using the similar method as in the proof of (i), we have (ii), (iii), (iv). ¤

We suppose that the nonlinearity (µ+2ν)g(u) crosses the eigenvalues λ1, i.e., (µ+2ν)A <
λ1 < (µ + 2ν)B < λ2. By using the similar method as in the proof of Theorem 3.2, we have
the following theorem.

Theorem 3.3. Let µ, ν be nonzero constants and 2 + µ
ν 6= 0. Assume that (µ + 2ν)A < λ1 <

(µ + 2ν)B < λ2 and f = αφ1. Then we have the followings.
(i) If α > 0, then system (3.1) has at least two solutions (ξ1, η1), (ξ2, η2) with ξ1 + 2η1 > 0,
ξ2 + 2η2 > 0.
(ii) If α < 0, then system (3.1) has no solution.
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