MULTIPLICITY AND NONLINEARITY IN THE NONLINEAR ELLIPTIC SYSTEM

TACKSUN JUNG ${ }^{1}$ AND $\mathrm{Q}-\mathrm{HEUNG} \mathrm{CHOI}^{2 \dagger}$
${ }^{1}$ Department of Mathematics, Kunsan National University, Kunsan 573-701, Korea
E-mail address: ts jung@kunsan.ac.kr
${ }^{2}$ Department of Mathematics, Inha University, Incheon 402-751, Korea
E-mail address: qheung@inha.ac.kr

Abstract. We investigate the existence of solutions $u(x, t)$ for perturbations of the elliptic system with Dirichlet boundary condition

$$
\begin{align*}
& L \xi+\mu g(\xi+2 \eta)=f \quad \text { in } \quad \Omega \\
& L \eta+\nu g(\xi+2 \eta)=f \quad \text { in } \quad \Omega \tag{0.1}
\end{align*}
$$

where $g(u)=B u^{+}-A u^{-}, u^{+}=\max \{u, 0\}, u^{-}=\max \{-u, 0\}, \mu, \nu$ are nonzero constants and the nonlinearity $(\mu+2 \nu) g(u)$ crosses the eigenvalues of the elliptic operator L.

1. INTRODUCTION

Let Ω be a bounded domain in $\mathbf{R}^{\mathbf{n}}$ with smooth boundary $\partial \Omega$ and let L denote the differential operator

$$
L=\sum_{1 \leq i, j \leq n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right)
$$

where $a_{i j}=a_{j i} \in C^{\infty}(\bar{\Omega})$. In [2] the authors investigate multiplicity of solutions of the nonlinear elliptic equation with Dirichlet boundary condition

$$
\begin{align*}
& L u+g(u)=f(x) \quad \text { in } \quad \Omega \tag{1.1}\\
& u=0 \quad \text { on } \quad \partial \Omega
\end{align*}
$$

where the semilinear term $g(u)=b u^{+}-a u^{-}$and L is a second order linear elliptic differential operator and a mapping from $L^{2}(\Omega)$ into itself with compact inverse, with eigenvalues $-\lambda_{i}$, each repeated according to its multiplicity,

$$
0<\lambda_{1}<\lambda_{2}<\lambda_{3} \leq \cdots \leq \lambda_{i} \leq \cdots \rightarrow \infty
$$

[^0]Here the source term f is generated by the eigenfunctions of the second order elliptic operator with Dirichlet boundary condition.

In $[5,7,8]$, the authors have investigated multiplicity of solutions of (1.1) when the forcing term f is supposed to be a multiple of the first eigenfunction and the nonlinearity $-\left(b u^{+}-a u^{-}\right)$ crosses eigenvalues. In [4], the authors investigated a relation between multiplicity of solutions and source terms of (1.1) when the forcing term f is supposed to be spanned two eigenfunction ϕ_{1}, ϕ_{2} and the nonlinearity $-\left(b u^{+}-a u^{-}\right)$crosses two eigenvalues λ_{1}, λ_{2}.

In this paper we investigate the existence of solutions $u(x, t)$ for perturbations of the elliptic system with Dirichlet boundary condition

$$
\begin{align*}
& L \xi+\mu\left(B(\xi+2 \eta)^{+}-A(\xi+2 \eta)^{-}\right)=f \quad \text { in } \quad \Omega, \\
& L \eta+\nu\left(B(\xi+2 \eta)^{+}-A(\xi+2 \eta)^{-}\right)=f \quad \text { in } \quad \Omega, \tag{1.2}\\
& \xi=0, \quad \eta=0 \quad \text { on } \quad \partial \Omega,
\end{align*}
$$

where $u^{+}=\max \{u, 0\}, u^{-}=\max \{-u, 0\}, \mu, \nu$ are nonzero constants and the nonlinearity $(\mu+2 \nu)\left(B(\xi+2 \eta)^{+}-A(\xi+2 \eta)^{-}\right)$crosses the eigenvalues of the elliptic operator L.

Equation (1.1) and the following type nonlinear equation with Dirichlet boundary condition was studied by many authors:

$$
\begin{gather*}
L u=b\left[(u+2)^{+}-2\right] \quad \text { in } \quad \Omega, \tag{1.3}\\
u=0 \quad \text { on } \quad \partial \Omega .
\end{gather*}
$$

In [9] Lazer and McKenna point out that this kind of nonlinearity $b\left[(u+2)^{+}-2\right]$ can furnish a model to study traveling waves in suspension bridges. So the nonlinear equation with jumping nonlinearity have been extensively studied by many authors. For fourth elliptic equation Tarantello [14], Micheletti and Pistoia [11][12] proved the existence of nontrivial solutions used degree theory and critical points theory separately. For one-dimensional case Lazer and McKenna [10] proved the existence of nontrivial solution by the global bifurcation method. For this jumping nonlinearity we are interest in the multiple nontrivial solutions of the equation. Here we used variational reduction method to find the nontrivial solutions of problem (1.2).

The organization of this paper is as following. In section 2 , we have a concern with a relation between multiplicity of solutions and source terms of a nonlinear elliptic equation when the nonlinearity crosses eigenvalues. We investigate the uniqueness and multiplicity of solutions for the single nonlinear elliptic equation. In section 3, we investigate the uniqueness and the existence of multiple solutions $u(x, t)$ for the elliptic system with Dirichlet boundary condition when the nonlinearity $(\mu+2 \nu)\left(B u^{+}-A u^{-}\right)$crosses the eigenvalues of the elliptic operator.

2. A SINGLE NONLINEAR ELLIPTIC EQUATION

We have a concern with a relation between multiplicity of solutions and source terms of a nonlinear elliptic equation

$$
\begin{equation*}
L u+b u^{+}-a u^{-}=f \quad \text { in } L^{2}(\Omega) . \tag{2.1}
\end{equation*}
$$

Here we suppose that the nonlinearity $-\left(b u^{+}-a u^{-}\right)$crosses eigenvalues. We consider three cases: The nonlinearity crosses no eigenvalue; the nonlinearity crosses the eigenvalue λ_{1}; the nonlinearity crosses the eigenvalues λ_{1}, λ_{2}.

Let us denote an element u, in H_{0}, as $u=\sum h_{j} \phi_{j}$ and we define a subspace H of H_{0} as

$$
H=\left\{u \in H_{0}: \sum\left|\lambda_{j}\right| h_{j}^{2}<\infty\right\}
$$

Then this is a complete normed space with a norm $\|u\|=\left(\sum\left|\lambda_{m n}\right| h_{m n}^{2}\right)^{\frac{1}{2}}$. If $f \in H_{0}$ and a, b are not eigenvalues of L, then every solution in H_{0} of $L u+b u^{+}-a u^{-}=f$ belongs to H (cf. [2]).

Case 1) The nonlinearity crosses no eigenvalue

We suppose that the nonlinearity $-\left(b u^{+}-a u^{-}\right)$crosses no eigenvalue, that is, $a, b<\lambda_{1}$. By the contraction mapping principle we have the following uniqueness theorem.

Theorem 2.1. Let $a, b<\lambda_{1}$ and $f \in H_{0}$. Then equation (2.1) has a unique solution in H.
Case 2) The nonlinearity crosses the eigenvalues λ_{1}, λ_{2}.
We suppose that the nonlinearity $-\left(b u^{+}-a u^{-}\right)$crosses two eigenvalues λ_{1}, λ_{2}, i.e., $a<$ $\lambda_{1}<\lambda_{2}<b<\lambda_{3}$. We have a concern with a relation between multiplicity of solutions and source terms of a nonlinear elliptic equation

$$
\begin{equation*}
L u+b u^{+}-a u^{-}=f \quad \text { in } L^{2}(\Omega) \tag{2.1}
\end{equation*}
$$

Here we suppose that f is generated by two eigenfunctions ϕ_{1} and ϕ_{2}.
Let V be the two dimensional subspace of $L^{2}(\Omega)$ spanned by $\left\{\phi_{1}, \phi_{2}\right\}$ and W be the orthogonal complement of V in $L^{2}(\Omega)$. Let P be an orthogonal projection $L^{2}(\Omega)$ onto V. Then every element $u \in H$ is expressed by

$$
u=v+w
$$

where $v=P u, w=(I-P) u$. Hence equation (2.1) is equivalent to a system

$$
\begin{gather*}
L w+(I-P)\left(b(v+w)^{+}-a(v+w)^{-}\right)=0 \tag{2.2}\\
L v+P\left(b(v+w)^{+}-a(v+w)^{-}\right)=s_{1} \phi_{1}+s_{2} \phi_{2} \tag{2.3}
\end{gather*}
$$

Lemma 2.1. For fixed $v \in V$, (2.2) has a unique solution $w=\theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous (with respect to L^{2} norm) in terms of v.

The proof of the lemma is similar to that of Lemma 2.1 of [3].
By Lemma 2.1, the study of multiplicity of solutions of (2.1) is reduced to that of an equivalent problem

$$
\begin{equation*}
L v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right)=s_{1} \phi_{1}+s_{2} \phi_{2} \tag{2.4}
\end{equation*}
$$

defined on the two dimensional subspace V spanned by $\left\{\phi_{1}, \phi_{2}\right\}$.
We note that if $v \geq 0$ or $v \leq 0$ then $\theta(v) \equiv 0$.
Since the subspace V is spanned by $\left\{\phi_{1}, \phi_{2}\right\}$ and $\phi_{1}(x)>0$ in Ω, there exists a cone C_{1} defined by

$$
C_{1}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2}: c_{1} \geq 0,\left|c_{2}\right| \leq k c_{1}\right\}
$$

for some $k>0$ so that $v \geq 0$ for all $v \in C_{1}$ and a cone C_{3} defined by

$$
C_{3}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2}: c_{1} \leq 0,\left|c_{2}\right| \leq k\left|c_{1}\right|\right\}
$$

so that $v \leq 0$ for all $v \in C_{3}$.
We define a map $\Phi: V \rightarrow V$ given by

$$
\begin{equation*}
\Phi(v)=L v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right), \quad v \in V \tag{2.5}
\end{equation*}
$$

Then Φ is continuous on V, since θ is continuous on V and we have the following lemma (cf. Lemma 2.2 of [3]).

Lemma 2.2. $\Phi(c v)=c \Phi(v)$ for $c \geq 0$ and $v \in V$.
Lemma 2.2 implies that Φ maps a cone with vertex 0 onto a cone with vertex 0 . We set the cones C_{2}, C_{4} as follows

$$
\begin{aligned}
C_{2} & =\left\{c_{1} \phi_{1}+c_{2} \phi_{2}: c_{2} \geq 0, c_{2} \geq k\left|c_{1}\right|\right\} \\
C_{4} & =\left\{c_{1} \phi_{1}+c_{2} \phi_{2}: c_{2} \leq 0, c_{2} \leq-k\left|c_{1}\right|\right\}
\end{aligned}
$$

Then the union of four cones $C_{i}(1 \leq i \leq 4)$ is the space V.
We investigate the images of the cones C_{1} and C_{3} under Φ. First we consider the image of the cone C_{1}. If $v=c_{1} \phi_{1}+c_{2} \phi_{2} \geq 0$, we have

$$
\begin{aligned}
\Phi(v) & =L(v)+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right) \\
& =-c_{1} \lambda_{1} \phi_{1}-c_{2} \lambda_{2} \phi_{2}+b\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) \\
& =c_{1}\left(b-\lambda_{1}\right) \phi_{1}+c_{2}\left(b-\lambda_{2}\right) \phi_{2}
\end{aligned}
$$

Thus the images of the rays $c_{1} \phi_{1} \pm k c_{1} \phi_{2}\left(c_{1} \geq 0\right)$ can be explicitly calculated and they are

$$
c_{1}\left(b-\lambda_{1}\right) \phi_{1} \pm k c_{1}\left(b-\lambda_{2}\right) \phi_{10} \quad\left(c_{1} \geq 0\right)
$$

Therefore Φ maps C_{1} onto the cone

$$
R_{1}=\left\{d_{1} \phi_{00}+d_{2} \phi_{10}: d_{1} \geq 0,\left|d_{2}\right| \leq k\left(\frac{b-\lambda_{2}}{b-\lambda_{1}}\right) d_{1}\right\}
$$

The cone R_{1} is in the right half-plane of V and the restriction $\left.\Phi\right|_{C_{1}}: C_{1} \rightarrow R_{1}$ is bijective.
We determine the image of the cone C_{3}. If $v=-c_{1} \phi_{1}+c_{2} \phi_{2} \leq 0$, we have

$$
\begin{aligned}
\Phi(v) & =L(v)+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right) \\
& =L v+P(a v) \\
& =-c_{1}\left(-\lambda_{1}+a\right) \phi_{1}+c_{2}\left(-\lambda_{2}+a\right) \phi_{2}
\end{aligned}
$$

Thus the images of the rays $-c_{1} \phi_{00} \pm k c_{1} \phi_{2}\left(c_{1} \geq 0\right)$ can be explicitly calculated and they are

$$
-c_{1}\left(-\lambda_{1}+a\right) \phi_{1} \pm k c_{1}\left(-\lambda_{2}+a\right) \phi_{2} \quad\left(c_{1} \geq 0\right)
$$

Thus Φ maps the cone C_{3} onto the cone

$$
R_{3}=\left\{d_{1} \phi_{1}+d_{2} \phi_{2}: d_{1} \geq 0, d_{2} \leq k\left|\frac{\lambda_{2}-a}{\lambda_{1}-a} \| d_{1}\right|\right\}
$$

The cone R_{3} is in the right half-plane of V and the restriction $\left.\Phi\right|_{C_{3}}: C_{3} \rightarrow R_{3}$ is bijective. We note that $R_{1} \subset R_{3}$ since $a<\lambda_{1}<\lambda_{2}<b<\lambda_{3}$.
Theorem 2.2. If f belongs to R_{1}, then equation (2.1) has a positive solution and a negative solution.

Lemma 2.2 means that the images $\Phi\left(C_{2}\right)$ and $\Phi\left(C_{4}\right)$ are the cones in the plane V. Before we investigate the images $\Phi\left(C_{2}\right)$ and $\Phi\left(C_{4}\right)$, we set

$$
\begin{gathered}
R_{2}^{\prime}=\left\{d_{1} \phi_{1}+d_{2} \phi_{2}: d_{1} \geq 0,-k\left|\frac{\lambda_{2}-a}{\lambda_{1}-a}\right| d_{1} \leq d_{2} \leq k\left|\frac{\lambda_{2}-b}{\lambda_{1}-b}\right| d_{1}\right\}, \\
R_{4}^{\prime}=\left\{d_{1} \phi_{1}+d_{2} \phi_{2}: d_{1} \geq 0,-k\left(\frac{\lambda_{2}-b}{\lambda_{1}-b}\right) d_{1} \leq d_{2} \leq k\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right) d_{1}\right\} .
\end{gathered}
$$

We note that all the cones $R_{2}^{\prime}, R_{3}, R_{4}^{\prime}$ contains R_{1}. R_{3} contain $R_{1}, R_{2}^{\prime}, R_{4}^{\prime}$.
To investigate a relation between multiplicity of solutions and source terms in the nonlinear equation

$$
\begin{equation*}
L u+b u^{+}-a u^{-}=f \quad \text { in } \quad H, \tag{2.6}
\end{equation*}
$$

we consider the restrictions $\left.\Phi\right|_{C_{i}}(1 \leq i \leq 4)$ of Φ to the cones C_{i}. Let $\Phi_{i}=\left.\Phi\right|_{C_{i}}$, i.e.,

$$
\Phi_{i}: C_{i} \rightarrow V
$$

For $i=1,3$, the image of Φ_{i} is R_{i} and $\Phi_{i}: C_{i} \rightarrow R_{i}$ is bijective.
Lemma 2.3. For every $v=c_{1} \phi_{1}+c_{2} \phi_{2}$, there exists a constant $d>0$ such that

$$
\left(\Phi(v), \phi_{1}\right) \geq d\left|c_{2}\right| .
$$

For the proof see [2].
From now on, our goal is to find the image of C_{i} under Φ_{i} for $i=2,4$. Suppose that γ is a simple path in C_{2} without meeting the origin, and end points (initial and terminal) of γ lie on the boundary ray of C_{2} and they are on each other boundary ray. Then the image of one end point of γ under Φ is on the ray $c_{1}\left(b-\lambda_{1}\right) \phi_{1}+k c_{1}\left(b-\lambda_{2}\right) \phi_{2}, c_{1} \geq 0$ (a boundary ray of R_{1}) and the image of the other end point of γ under Φ is on the ray $-c_{1}\left(-\lambda_{1}+a\right) \phi_{1}+$ $k c_{1}\left(-\lambda_{2}+a\right) \phi_{10}, c_{1} \geq 0$ (a boundary ray of R_{3}). Since Φ is continuous, $\Phi(\gamma)$ is a path in V. By Lemma 2.2, $\Phi(\gamma)$ does not meet the origin. Hence the path $\Phi(\gamma)$ meets all rays (starting from the origin) in R_{2}^{\prime}.

Therefore it follows from Lemma 2.3 that the image $\Phi\left(C_{2}\right)$ of C_{2} contains R_{2}^{\prime}.
Similarly, we have that the image $\Phi\left(C_{4}\right)$ of C_{4} contains R_{4}^{\prime}.
If a solution of (2.1) is in $\operatorname{Int} C_{1}$, then it is positive. If a solution of (2.1) is in $\operatorname{Int} C_{3}$, then it is negative. If it is in $\operatorname{Int}\left(C_{2} \cup C_{4}\right)$, then it has both signs. Therefore we have the main theorem of this section.

Theorem 2.3. Let $a<\lambda_{1}<\lambda_{2}<b<\lambda_{3}$. Let $v=c_{1} \phi_{1}+c_{2} \phi_{2}$. Then we have the followings. (i) If $f \in$ Int R_{1}, then equation (2.1) has a positive solution, a negative solution, and at least two solutions changing sign.
(ii) If $f \in \partial R_{1}$, then equation (2.1) has a positive solution, a negative solution, and at least one solution changing sign.
(iii) If $f \in \operatorname{Int}\left(R_{3} \backslash R_{1}\right)$, then equation (2.1) has a negative solution and at least one solution changing sign.
(iv) If $f \in \partial R_{3}$, then equation (2.1) has a negative solution.

Case 2) The nonlinearity crosses the eigenvalue λ_{1}

We suppose that the nonlinearity $-\left(b u^{+}-a u^{-}\right)$crosses the eigenvalues λ_{1}, i.e., $a<\lambda_{1}<$ $b<\lambda_{2}$. Then it is easy to prove the following theorem.

Theorem 2.4. Let $a<\lambda_{1}<b<\lambda_{2}$ and $f=\alpha \phi_{1}$. Then we have the followings.
(i) If $\alpha>0$, then equation (2.1) has a positive solution and a negative solution.
(ii) If $\alpha<0$, then equation (2.1) has no solution.

3. MULTIPLE SOLUTIONS FOR THE ELLIPTIC SYSTEM

Let Ω be a bounded domain in $\mathbf{R}^{\mathbf{n}}$ with smooth boundary $\partial \Omega$ and let L denote the differential operator

$$
L=\sum_{1 \leq i, j \leq n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right)
$$

where $a_{i j}=a_{j i} \in C^{\infty}(\bar{\Omega})$. In this section we investigate the existence of solutions $u(x, t)$ for perturbations of the elliptic system with Dirichlet boundary condition

$$
\begin{align*}
& L \xi+\mu g(\xi+2 \eta)=f \quad \text { in } \quad \Omega \\
& L \eta+\nu g(\xi+2 \eta)=f \quad \text { in } \quad \Omega \tag{3.1}\\
& \xi=0, \eta=0 \quad \text { on } \quad \partial \Omega
\end{align*}
$$

where $g(u)=B u^{+}-A u^{-}, u^{+}=\max \{u, 0\}, u^{-}=\max \{-u, 0\}, \mu, \nu$ are nonzero constants and the nonlinearity $(\mu+2 \nu) g(u)$ crosses the eigenvalues of the elliptic operator L.

Here we assume that $-7<\mu-\nu<-3$.
We suppose that the nonlinearity $(\mu+2 \nu) g(u)$ crosses no eigenvalue of L, that is, $(\mu+$ $2 \nu) A,(\mu+2 \nu) B<\lambda_{1}$. By the contraction mapping principle we have the following uniqueness theorem.

Theorem 3.1. Let μ, ν be nonzero constants and $2+\frac{\mu}{\nu} \neq 0$. Assume that $(\mu+2 \nu) A,(\mu+$ $2 \nu) B<\lambda_{1}$. and $f \in H_{0}$. Then elliptic system (3.1) has a unique solution (ξ, η).
Proof. From problem (3.1) we get that $L \xi-f=\frac{\mu}{\nu}(L \eta-f)$. By Theorem 2.1, for any $F \in H_{0}$ the problem

$$
\begin{align*}
& L u=F \quad \text { in } \quad \Omega \\
& u=0 \quad \text { on } \quad \partial \Omega \tag{3.2}
\end{align*}
$$

has a unique solution. If $u_{1-\frac{\mu}{\nu}}$ is a solution of $L\left(\xi-\frac{\mu}{\nu} \eta\right)=\left(1-\frac{\mu}{\nu}\right) f$, then the solution (ξ, η) of problem (3.1) satisfies

$$
\begin{equation*}
\xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} \tag{A}
\end{equation*}
$$

On the other hand, from problem (3.1) we get the equation

$$
\begin{align*}
& L(\xi+2 \eta)+(\mu+2 \nu) g(\xi+2 \eta)=3 f \quad \text { in } \quad \Omega \\
& \xi=0, \quad \eta=0 \quad \text { on } \quad \partial \Omega \tag{3.3}
\end{align*}
$$

Put $w=\xi+2 \eta$. Then the above equation is equivalent to

$$
\begin{align*}
& L w+(\mu+2 \nu) g(\xi+2 \eta)=3 f \quad \text { in } \quad \Omega \tag{3.4}\\
& w=0 \quad \text { on } \quad \partial \Omega
\end{align*}
$$

When $(\mu+2 \nu) A,(\mu+2 \nu) B<\lambda_{1}$, by Theorem 2.1 the above equation has a unique solution, say w_{1}. Hence we get the solutions (ξ, η) of problem (3.1) from the following systems:

$$
\begin{align*}
& \xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} \tag{3.5}\\
& \xi+2 \eta=w_{1}
\end{align*}
$$

Since $2+\frac{\mu}{\nu} \neq 0$, system (3.5) has a unique solution (ξ, η).
Theorem 3.2. Let μ, ν be nonzero constants and $2+\frac{\mu}{\nu} \neq 0$. Assume that $\left.\mu+2 \nu\right) A<\lambda_{1}<$ $\lambda_{2}<(\mu+2 \nu) B<\lambda_{3}$ and $f=c_{1} \phi_{1}+c_{2} \phi_{2}$. Then we have the followings.
(i) If $f \in$ Int R_{1}, then system (3.1) has a positive solution, a negative solution, and at least two solutions changing sign.
(ii) If $f \in \partial R_{1}$, then system (3.1) has a positive solution, a negative solution, and at least one solution changing sign.
(iii) If $f \in \operatorname{Int}\left(R_{3} \backslash R_{1}\right)$, then system (3.1) has a negative solution and at least one solution changing sign.
(iv) If $f \in \partial R_{3}$, then system (3.1) has a negative solution.

Proof. (i) From problem (3.1) we get that $L \xi-f=\frac{\mu}{\nu}(L \eta-f)$. By Theorem 2.1, for any $F \in H_{0}$ the problem

$$
\begin{array}{lll}
L u=F & \text { in } & \Omega, \\
u=0 & \text { on } & \partial \Omega \tag{3.6}
\end{array}
$$

has a unique solution. If $u_{1-\frac{\mu}{\nu}}$ is a solution of $L\left(\xi-\frac{\mu}{\nu} \eta\right)=\left(1-\frac{\mu}{\nu}\right) f$, then the solution (ξ, η) of problem (3.1) satisfies

$$
\begin{equation*}
\xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} . \tag{A}
\end{equation*}
$$

On the other hand, from problem (3.1) we get the equation

$$
\begin{align*}
& L(\xi+2 \eta)+(\mu+2 \nu) g(\xi+2 \eta)=3 f \quad \text { in } \quad \Omega \\
& \xi=0, \quad \eta=0 \quad \text { on } \quad \partial \Omega \tag{3.7}
\end{align*}
$$

Put $w=\xi+2 \eta$. Then the above equation is equivalent to

$$
\begin{align*}
& L w+(\mu+2 \nu) g(w)=3 f \quad \text { in } \quad \Omega \\
& w=0 \quad \text { on } \quad \partial \Omega \tag{3.8}
\end{align*}
$$

where $g(w)=B w^{+}-A w^{-}$and the nonlinearity $(\mu+2 \nu) g(w)$ crosses the eigenvalues of the elliptic operator L. When $(\mu+2 \nu) A<\lambda_{1}<\lambda_{2}<(\mu+2 \nu) B<\lambda_{3}$ and $f \in$ Int R_{1}, by Theorem 2.3 (i) the above equation has a positive solution w_{p}, a negative solution w_{n}, and at least two solutions changing sign $w_{c_{1}}, w_{c_{2}}$.

Hence we get the solutions (ξ, η) of problem (3.1) from the following systems:

$$
\begin{align*}
& \xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} \tag{3.9}\\
& \xi+2 \eta=w_{p} \\
& \xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} \tag{3.10}\\
& \xi+2 \eta=w_{n} \\
& \xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} \tag{3.11}\\
& \xi+2 \eta=w_{1} \\
& \xi-\frac{\mu}{\nu} \eta=u_{1-\frac{\mu}{\nu}} \tag{3.12}\\
& \xi+2 \eta=w_{1}
\end{align*}
$$

Since $2+\frac{\mu}{\nu} \neq 0$, system (3.9) has a unique solution $\left(\xi_{1}, \eta_{1}\right)$ with $\xi_{1}+2 \eta_{1}>0$. From (3.10) we get the solution $\left(\xi_{2}, \eta_{2}\right)$ with $\xi_{2}+2 \eta_{2}<0$. From (3.11), (3.12) we get the solution $\left(\xi_{3}, \eta_{3}\right)$, $\left(\xi_{4}, \eta_{4}\right)$, where $\xi_{i}+2 \eta_{i}(i=1,2)$ are changing sign.

Therefore system(3.1) has at least four solutions.
By using the similar method as in the proof of (i), we have (ii), (iii), (iv).
We suppose that the nonlinearity $(\mu+2 \nu) g(u)$ crosses the eigenvalues λ_{1}, i.e., $(\mu+2 \nu) A<$ $\lambda_{1}<(\mu+2 \nu) B<\lambda_{2}$. By using the similar method as in the proof of Theorem 3.2, we have the following theorem.

Theorem 3.3. Let μ, ν be nonzero constants and $2+\frac{\mu}{\nu} \neq 0$. Assume that $(\mu+2 \nu) A<\lambda_{1}<$ $(\mu+2 \nu) B<\lambda_{2}$ and $f=\alpha \phi_{1}$. Then we have the followings.
(i) If $\alpha>0$, then system (3.1) has at least two solutions $\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)$ with $\xi_{1}+2 \eta_{1}>0$, $\xi_{2}+2 \eta_{2}>0$.
(ii) If $\alpha<0$, then system (3.1) has no solution.

ACKNOWLEDGMENTS

The authors appreciate very much the referee's kind corrections.

REFERENCES

[1] H.Amann, Saddle points and multiple solutions of differential equation, Math.Z. 169 (1979), 27-166.
[2] A. Ambrosetti and P. H. Rabinowitz, Dual variation methods in critical point theory and applications, J. Functional analysis, 14 (1973), 349-381.
[3] Q. H. Choi, T. Jung and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction mehtod, Appl. Anal., 50 (1993),73-92.
[4] Q. H. Choi, S. Chun and T. Jung, The multiplicity of solutions and geometry of the nonlinear elliptic equation, Studia Math. 120 (1996), 259-270.
[5] Q. H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential equations, 117 (1995), 390-410.
[6] A.C. Lazer and P.J. McKenna, Some multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395.
[7] A.C Lazer and P.J. McKenna, Critical points theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm.in P.D.E. 11 (1986), 1653-1676.
[8] A. C. Lazer and P. J. McKenna, A symmetry theorem and applications to nonlinear partial differential equations, J. Differential Equations 72 (1988), 95-106.
[9] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Review, 32 (1990), 537-578.
[10] A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl, 181 (1994), 648-655.
[11] A.M. Micheletti and A.Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Analysis TMA, 31 (1998), 895-908.
[12] A. M. Micheletti, A.Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Analysis, 34 (1998), 509-523.
[13] Paul H. Rabinobitz, Minimax methods in critical point theory with applications to differential equations, Mathematical Science regional conference series, No. 65, AMS, 1984.
[14] G. Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equations. 5 (1992), 561-565.

[^0]: 2000 Mathematics Subject Classification. 35J05, 35J25, 35 J 55.
 Key words and phrases. Elliptic system, eigenvalue problem, Dirichlet boundary condition, uniqueness, multiple solutions.

 This work was supported by Inha University Research grant.
 ${ }^{\dagger}$ Corresponding author.

