• Title/Summary/Keyword: Dirichlet Boundary Condition

Search Result 134, Processing Time 0.033 seconds

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.

Calculation of Wavemaking Resistance of High Speed Catamaran Using a Panel Method

  • Lee, Seung-Joon;Joo, Young-Ryeol
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a panel method is described, which cart solve the flow field round a surface-piercing body that experiences lift and wave resistance. As the body boundary condition, a Dirichlet type is employed, and as the free surface boundary condition the Poisson type is implemented, while in its discretization Dawson's 4-point upwind difference scheme is utilized, and as the Kutta condition a Morino-Kuo type is chosen. As to the type of singularity, source panels are distributed on the free surface, and source and dipole panels on the body surface, and dipole panels on the wake surface. For a sample run, a catamaran of the parabolic Wigley hull is chosen, for which experimental data are available, and the predictions by the numerical means and by the experiment are compared for a wide range of parameters.

  • PDF

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Lee, Yoon-Weon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1255-1274
    • /
    • 2008
  • The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.

An Application of the Multigrid Method to Eigenvalue problems (복합마디방법의 고유치문제에 응용)

  • Lee, Gyou-Bong;Kim, Sung-Soo;Sung, Soo-Hak
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.9-11
    • /
    • 1996
  • We apply a full mutigrid scheme to computing eigenvalues of the Laplace eigenvalue problem with Dirichlet boundary condition. We use finite difference method to get an algebraic equation and apply inverse power method to estimating the smallest eigenvalue. Our result shows that combined method of inverse power method and full multigrid scheme is very effective in calculating eigenvalue of the eigenvalue problem.

  • PDF

Nonlinear Elliptic Equations under Dirichlet boundary Condition (Dirichlet 경계조건하에서의 비선형 타원형 방정식)

  • Han, Chun-Ho;Kim, Zheng-Guo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.61-67
    • /
    • 1998
  • 이 논문에서는 Diruchlet 경계 조건을 갖는 비선형 타원형 방정식 $-{\Delta}u+g(u)=f(x)$의 해의 존재에 대한 연구를 하였다. 존재하는 해의 다중성을 증명하기 위하여 임계점 이론과 롤의 정리를 사용하였으며, 대응되는 범함수에 따라서 방정식의 해와 임계점이 동시에 나타난다는 정리를 이용하였다. 이 때 $g(u)=bu^+-au^-$으로 나타날 때 외력항 (방정식의 우변)의 상수로 주어지는 경우 적어도 두 개의 해가 존재한다는 것을 증명하였다. 만약 우변(외력항)의 상수가 음수이거나 0인 경우이 방정식의 해가 존재하지 않거나 자명한 해만 존재하기 때문에 상수는 양수인 것으로 가정하였다.

  • PDF

NEGATIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR WAVE EQUATIONS WITH CRITICAL GROWTH

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • We show the existence of a negative solution for the system of the following nonlinear wave equations with critical growth, under Dirichlet boundary condition and periodic condition $$u_{tt}-u_{xx}=au+b{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha-1}{\upsilon}_+^{\beta}+s{\phi}_{00}+f,\\{\upsilon}_{tt}-{\upsilon}_{xx}=cu+d{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha}{\upsilon}_+^{{\beta}-1}+t{\phi}_{00}+g,$$ where ${\alpha},{\beta}>1$ are real constants, $u_+={\max}\{u,0\},\;s,\;t{\in}R,\;{\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator and f, g are ${\pi}$-periodic, even in x and t and bounded functions.

  • PDF

A FINITE ELEMENT METHOD USING SINGULAR FUNCTIONS FOR HELMHOLTZ EQUATIONS: PART I

  • Kim, Seok-Chan;Pyo, Jae-Hong;Lee, Jong-Sik
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • In [7, 8], they proposed a new singular function(NSF) method to compute singular solutions of Poisson equations on a polygonal domain with re-entrant angles. Singularities are eliminated and only the regular part of the solution that is in $H^2$ is computed. The stress intensity factor and the solution can be computed as a post processing step. This method was extended to the interface problem and Poisson equations with the mixed boundary condition. In this paper, we give NSF method for the Helmholtz equations ${\Delta}u+Ku=f$ with homogeneous Dirichlet boundary condition. Examples with a singular point are given with numerical results.

  • PDF

The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem (운동자계 문제의 해석을 위한 유한요소법에 관한 연구)

  • Chang Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.108-116
    • /
    • 2005
  • This paper presents finite element analyses solution in the travelling magnetic field problem. The travelling magnetic field problem is subject to convective-diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Dirichlet, Neumann and Periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FFM is stable regardless boundary condition.

STUDY ON THE PERTURBED PIECEWISE LINEAR SUSPENSION BRIDGE EQUATION WITH VARIABLE COEFFICIENT

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2011
  • We get a theorem that there exist at least two solutions for the piecewise linear suspension bridge equation with variable coefficient jumping nonlinearity and Dirichlet boundary condition when the variable coefficient of the nonlinear term crosses first two successive negative eigenvalues. We obtain this multiplicity result by applying Leray-Schauder degree theory.