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ABSTRACT. In [7, 8], they proposed a new singular function(NSF) method to compute singu-
lar solutions of Poisson equations on a polygonal domain with re-entrant angles. Singularities
are eliminated and only the regular part of the solution that is in H2 is computed. The stress
intensity factor and the solution can be computed as a post processing step. This method was
extended to the interface problem and Poisson equations with the mixed boundary condition.
In this paper, we give NSF method for the Helmholtz equations−∆u+Ku = f with homoge-
neous Dirichlet boundary condition. Examples with a singular point are given with numerical
results.

1. INTRODUCTION

Assume that Ω ⊂ R2 is an open, bounded polygonal domain with one reenterent corner.
For a given function f ∈ L2(Ω), consider the Helmholtz equation with homogeneous Dirichlet
boundary conditions:

{
Lu := −∆u + Ku = f in Ω,

u = 0 on Γ = ∂Ω,
(1)

where ∆ stands for the Laplacian operator. Solution of (1) has singular behavior near corners
even when f is very smooth. Such corner singularity affects the accuracy of the finite element
method throughout the whole domain. There are two main approaches to overcome this deficit.
One is the method of local grid refinement (see, e.g., [1, 2]). This method also has the advantage
that it does not require the knowledge of the exact forms of the singular functions. It only needs
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the knowledge of the exponents of the singular functions. Another approaches are the so-
called Singular Function Method (SFM) (see, e.g., [13]) and Dual Singular Function Method
(DSFM) (see, e.g., [11, 5, 6, 12]). Both methods are based on the fact that solutions of the
boundary value problems on polygonal domains have a singular function representation: a
linear combination of singular functions and the regular part of the solution. Coefficients of
singular functions in this representation are called the stress intensity factors.

Recently in [7] they used this property in order to calculate accurate finite element approxi-
mations to both the solution and the stress intensity factors. The loss of standard finite element
approximation accuracy for elliptic boundary value problems with corner singularities is due
to the non-smoothness of the solution. Therefore, it is natural to try to approximate first the
regular part of the solution, and then compute the stress intensity factors and the solution. In
[7], they considered the Poisson Problem and, using the dual singular functions and a particu-
larly chosen cut-off function, deduced a well-posed variational problem for the regular part of
the solution.

The purpose of this paper is to extend results for the Poisson equations with Dirichlet bound-
ary conditions in [7] to the Helmholtz problem with homogeneous Dirichlet boundary condi-
tions.

It can be easily checked that the singular function decomposition for Helmholtz problem is
the same as that for Poisson problem. A little modified type of extraction form for Helmholtz
problem is given in section 2. A detail proof of the existence and uniqueness of the variational
problem for the regular part is given in section 3. In section 4, we introduce a finite element
approximation and estimate its error bound. Finally, in section 5, we present the numerical
results for examples with a singular point.

We will use the standard notation and definitions for the Sobolev spaces Ht(Ω) for t ≥ 0;
the standard associated inner products are denoted by (·, ·)t,Ω, and their respective norms and
seminorms are denoted by ‖ · ‖t,Ω and | · |t,Ω. The space L2(Ω) is interpreted as H0(Ω),
in which case the inner product and norm will be denoted by (·, ·)Ω and ‖ · ‖Ω, respectively.
H1

0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ}.

2. SINGULAR FUNCTION REPRESENTATIONS

Let ω be internal angles of Ω satisfying π < ω < 2π and denote by v the corresponding
vertices. Let the polar co-ordinates (r, θ) be chosen at the vertex v so that the internal angle
ω is spanned counterclockwise by two half-lines θ = 0 and θ = ω. Let the singular function
s(r, θ) and its dual singular function s−(r, θ) to be defined as

s(r, θ) = r
π
ω sin

πθ

ω
(2)

and

s−(r, θ) = r−
π
ω sin

πθ

ω
. (3)

Now we set

B(t1; t2) = {(r, θj) : t1 < r < t2 and 0 < θj < ω} ∩ Ω and B(t1) = B(0; t1),
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and define a family of cut-off functions of r, ηρ(r), as follows:

ηρ(r) =





1 in B(1
2ρR),

1
32

{
16− 35pρ(r) + 35pρ(r)3 − 21pρ(r)5 + 5pρ(r)7

}
in B̄(1

2ρR; ρR),

0 in Ω \ B̄(ρR),

with pρ(r) = 4r
ρR − 3 where ρ is a parameter in (0, 2] and R ∈ R is a fixed number so that the

η2s has the same boundary condition as u.
The singular function representation for the solution of Poisson problem is well known ([3,

10, 11, 14]). Similarly we can show that the solution of (1) also has the following singular
function representation([14, 16]):

u = w + λ ηρs(r, θ) (4)

where w ∈ H2(Ω)
⋂

H1
0 (Ω) is the regular part of the solution and λ ∈ R are the stress

intensity factors that can be expressed in terms of w by the following Lemma.

Lemma 2.1. There is a cut-off function ηρ such that

λ =
1
B

(f, η2s−) +
1
B

(w,−L(η2s−)), (5)

with B := π + K(ηρs, s−) 6= 0.

Proof. Multiplying η2s− to (1) and integrating gives

−(∆w, η2s−)− λ(∆ηρ, η2s−) + (Kw, η2s−) + λ(Kηρs, η2s−) = (f, η2s−),

which implies the lemma with the facts (∆ηρ, η2s−) = −π and (∆w, η2s−) = (w,∆η2s−)
(see [7]). Here we note that ρ can be chosen so that B = π + K(ηρs, s−) = π + K ·
41
288ω(ρR)2 6= 0. ¤

Moreover, the following regularity estimate holds:

‖w‖2 + |λ| ≤ CR‖f‖. (6)

In the remainder of this section, we derive a well-posed problem for w. Using (4) and
substituting (5) into the Helmholtz equation, we obtain an integro-differential equation for w:

Lw − 1
B

(w,−L(η2s−))B(2R)L(ηρs) = f − 1
B

(f, η2s−)B(2R)L(ηρs) in Ω.

Multiplying the above equation by a test function v ∈ H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on Γ},

integrating over Ω, and using integration by parts lead to the following variational problem:
finding w ∈ H2(Ω)

⋂
H1

0 (Ω) such that

a(w, v) = g(v) ∀v ∈ H1
0 (Ω), (7)
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where the bilinear form a(·, ·) and linear form g(·) are defined by

a(w, v) = as(w, v) + b(w, v), as(w, v) = (∇w,∇v) + K(w, v),

b(w, v) = − 1
B (w, L(η2s−))B(2R)(L(ηρs), v)B( ρR),

(8)

and

g(v) = (f, v)− 1
B

(f, η2s−)B(2R)(L(ηρs), v)B(ρR). (9)

Note that the second terms in the respective bilinear and linear forms provide a singular
correction so that w ∈ H2(Ω) for f ∈ L2(Ω). Note also that the bilinear forms a(·, ·) are not
symmetric.

3. WELL-POSEDNESS

Lemma 3.1. For any 0 < ρ, there are Ci, i = 1, 2, 3, such that

‖ηρs‖B(ρR) ≤ C1(ρR)
π
ω

+1, ‖η2s−‖B(2R) ≤ C1(2R)−
π
ω

+1, ‖ηρs‖1 ≤ C2(ρR)
π
ω , (10)

‖∆(ηρs)‖B( ρR
2

:ρR)
≤ C3(ρR)

π
ω
−1 and ‖∆(η2s−)‖B(R;2R) ≤ C3(2R)−

π
ω
−1. (11)

Proof. This lemma can be established by an elementary calculation. ¤

Lemma 3.2.
‖L(ηρs)‖ ≤ C3(ρR)

π
ω
−1 + |K|C1(ρR)

π
ω

+1 ≤ C4 (12)

and
‖L(η2s−)‖ ≤ C3(2R)−

π
ω
−1 + |K|C1(2R)−

π
ω

+1 ≤ C5. (13)

Note that the L2-norms of L(ηρs) and L(η2s−) are bounded for fixed value of ρ > 0 and
that C4 increases to infinity as ρ approaches to 0. In computation, we will choose 1

2 < ρ ≤ 1 so
that the coefficients C4 and C5 are bounded numbers. We will need the following well-known
Poincaré-Friedrichs inequality:

‖v‖ ≤ CΩ‖∇v‖ ∀v ∈ H1
0 (Ω),

where CΩ is a positive constant depending only on the domain Ω.
Now, in a similar fashion as in [7], we can prove the coercivity and continuity of the bilinear

form a(·, ·) and the well posed-ness of problem (7).

Lemma 3.3. For 0 < ρ ≤ 1, the bilinear forms a(·, ·) are continuous and coercive in H1
0 (Ω);

i.e. there exist positive constants α, K1, and K2 such that

α‖φ‖2
1 ≤ a(φ, φ) + K1‖φ‖2 (14)

for all φ ∈ H1
0 (Ω) and that

a(φ, ψ) ≤ K2‖φ‖1‖ψ‖1 (15)

for all φ and ψ in H1
0 (Ω).
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Proof. By the Cauchy-Schwarz inequality and Lemma 3.2, we have

| − 1
B

(φ,L(η2s−))B(R;2R)(L(ηρs), ψ)B( 1
2
ρR; ρR)| ≤

C4C5

B
‖φ‖‖ψ‖. (16)

The inequality (15) is an immediate consequence of the Cauchy-Schwarz inequality and (16)
with K2 = 1 + C4C5/B. By using (16) with ψ = φ, we have

a(φ, φ) ≥ ‖∇φ‖2 + K‖φ‖2 − C4C5

B
‖φ‖2,

which gives (14) together with the Poincaré-Friedrichs inequality with α = 1/(1 + C2
Ω) and

K1 = C4C5/B −K. ¤

To get the the well-posedness of our variational problem (7), we will make use of the Fred-
holm alternative (see, eq., [15]). For this, consider the following bilinear form:

aµ(w, v) = a(w, v) + µ(w, v)

for µ > 0.

Theorem 3.1. For 0 < ρ ≤ 1, we have that
(1) if f ∈ L2(Ω), then problem (7) has a unique solution w ∈ H2(Ω)

⋂
H1

0 (Ω).
(2) there exists a positive constant γ such that

γ‖φ‖1 ≤ sup
ψ∈H1

0 (Ω)

a(φ, ψ)
‖ψ‖1

(17)

for any φ ∈ H1
D(Ω).

Proof. Let Tµ : H1
0 (Ω) → H−1(Ω) be the corresponding operator of the bilinear form aµ(·, ·),

where H−1(Ω) is the dual space of H1
0 (Ω) with the standard dual norm denoted by ‖ · ‖−1.

First we will see that T0w = 0 has only trivial solution, then the rest parts of the proof will
follow in a similar way as in [7].

Note T0w = 0 in H−1(Ω) means that ∀v ∈ H1
0 ,

0 = (T0w, v) = a(w, v) = (∇w,∇v) + K(w, v)− 1
B

(w, L(η2s−))(L(ηρs), v),

which implies

−∆w + Kw +
1
B

(w,L(η2s−))∆(ηρs)− 1
B

(w, L(η2s−))Kηρs ≡ 0 in Ω,

since it satisfies the Poisson equation with zero data, or equivalently,

−∆(w − 1
B

(w,L(η2s−))ηρs) + K(w − 1
B

(w,L(η2s−))ηρs) ≡ 0 in Ω.

Since w − 1
B (w,L(η2s−))ηρs satisfies the Helmholtz equation with input function f = 0 and

the homogeneous Dirichlet boundary condition, we observe that w is a scalar multiple of ηρs,
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or w = c0ηρs, with c0 = 1
B (w, L(η2s−)). Thus, by the definition of the cut-off function and

the constant B (see Lemma 5) we have

c0ηρs = w = 1
B (w,L(η2s−))ηρs = c0

B (ηρs,−∆(η2s−))ηρs + c0
B (ηρs,Kη2s−)ηρs

= 0 + c0
B K(ηρs, s−)ηρs = c0

B (B − π)ηρs = c0ηρs− c0π
B ηρs,

(18)
which implies c0 = 0, i.e., w ≡ 0, the trivial solution. Now, using similar methods in [7] with
the above result, we have the theorem. ¤
Corollary 3.1. Let w and λ be the solution of (7) and the stress intensity factors defined in (5),
respectively. For 0 < ρ ≤ 1,

u = w + ληρs (19)
is the solution of (1).

4. FINITE ELEMENT APPROXIMATION

This section presents standard finite element approximation on a quasi-uniform grid for w
based on the variational problem in (7). Approximations to the stress intensity factors and the
solution of problem (1) can then be calculated according to (5) and (4), respectively. Error
estimates are established in Theorem 4.1.

Let Th be a partition of the domain Ω into triangular finite elements; i.e., Ω =
⋃

K∈Th
K

with h = max{diam K : K ∈ Th}. Assume that the triangulation Th is regular. Denote
continuous piecewise linear finite element space by

Vh = {φh ∈ C0(Ω) : φh|K is linear ∀ K ∈ Th and φh = 0 on Γ} ⊂ H1
0 (Ω).

It is well known that

inf
φh∈Vh

(‖φ− φh‖+ h|φ− φh|1) ≤ CAh1+t‖φ‖1+t,Ω (20)

for any φ ∈ H1
0 (Ω)

⋂
H1+t(Ω) and 0 ≤ t ≤ 1. The finite element approximation to problem

(7) is to find wh ∈ Vh such that

a(wh, v) = g(v) ∀ v ∈ Vh. (21)

Approximations to the λ and the solution are calculated as follows:

λh =
1
B

(f, η2s−)B(2R) +
1
B

(wh, −L(η2s−))B(2R) (22)

and
uh = wh + λh ηρs. (23)

In order to establish the error bound in the L2 norm, we consider the following adjoint
problem of (7) with a simplified linear form: find z ∈ H1

0 (Ω) such that

a(v, z) = (w − wh, v) ∀v ∈ H1
0 (Ω). (24)

The next lemma establishes the well-posedness of problem (24) and provides the regularity
estimate for z.



FEM USING SINGULAR FUNCTIONS FOR HELMHOLTZ EQUATIONS 19

Lemma 4.1. For 0 < ρ ≤ 1, problem (24) has a unique solution z in H1
0 (Ω). Moreover, there

is a singular function representation

z = wz + λzηρs, (25)

where wz ∈ H2(Ω)
⋂

H1
0 (Ω) and λz ∈ R satisfy the regularity estimate

‖wz‖2 + |λz| ≤ C ′
R‖w − wh‖. (26)

Proof. Similar to Theorem 3.1, the adjoint problem in (24) has a unique solution in H1
0 (Ω)

and that there exists a positive constant γ′ such that

γ′‖ψ‖1 ≤ sup
φ∈H1

0 (Ω)

a(φ, ψ)
‖φ‖1

∀ ψ ∈ H1
0 (Ω).

Let z be the solution of (24), by the Cauchy-Schwarz inequality we then have that

‖z‖1 ≤ 1
γ′

sup
φ∈H1

0 (Ω)

a(φ, z)
‖φ‖1

=
1
γ′

sup
φ∈H1

0 (Ω)

(w − wh, φ)
‖φ‖1

≤ 1
γ′
‖w − wh‖. (27)

It is easy to check that the solution, z ∈ H1
0 (Ω), of problem (24) satisfies

∆z = Kz − 1
B

(L(ηρs), z)L(η2s−)− (w − wh) in Ω. (28)

Since the right-hand side of the above equation is at least in L2(Ω), so is ∆z. Therefore, z has
the singular function representation

z = wz + λz ηρ s,

where wz ∈ H2(Ω)
⋂

H1
0 and

‖wz‖2 + |λz| ≤ CR‖∆z‖.
Now, the regularity bound in (26) follows from the triangle and Cauchy-Schwarz inequalities,
(27), and Lemma 3.1 that

‖wz‖2 + |λz| ≤ CR‖∆z‖

≤ CR(|K|‖z‖+ 1
|B| |(L(ηρs), z)B(ρR)| · ‖L(η2s−)‖B(2R) + ‖w − wh‖)

≤ CR( |K|γ′ + C4C5
|B|γ′ + 1)‖w − wh‖.

This proves the inequality in (26) with

C
′
R = CR(

|K|
γ′

+
C4C5

|B|γ′ + 1)

and, hence, the lemma.
Now we are ready to establish error bounds for the finite element approximations.
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Theorem 4.1. (i) For 0 < ρ ≤ 1, there exists a positive constant h0 such that for all
h ≤ h0 (21) has a unique solution wh in Vh. Moreover, let w ∈ H2(Ω)

⋂
H1

0 (Ω) be
the solution of (7), then we have the following error estimates:

‖w − wh‖1 ≤ C6h‖f‖ and ‖w − wh‖ ≤ C7h
1+ π

ω ‖f‖. (29)

(ii) Let λ and λh be defined in (5) and (22), respectively. Then

|λ− λh| ≤ C

π
R− π

ω
−1‖w − wh‖ ≤ C8R

− π
ω
−1h1+ π

ω ‖f‖. (30)

(iii) Let u be the solution of (1) and uh be its approximation defined in (23), then we have
the following error estimates:

‖u− uh‖1 ≤ C9h‖f‖ and ‖u− uh‖ ≤ C10h
1+ π

ω ‖f‖. (31)

Proof. (i) We first establish error bounds in (29) for any solution to problem (21) that may
exist. Then, for f ≡ 0, the uniqueness of the solution to problem (7) and the error bound in (29)
imply that wh ≡ 0. Hence, (21) has a unique solution wh in Vh since it is a finite dimensional
problem with the same number of unknowns and equations.

To establish error bounds, note first the orthogonality property

a(w − wh, v) = 0 ∀ v ∈ Vh. (32)

By choosing v = w−wh in (24) and using the orthogonality property in (32) and the continuity
bound in (15), we have that

‖w − wh‖2 = a(w − wh, z) = a(w − wh, z − Ihz) ≤ K2‖w − wh‖1‖z − Ihz‖1, (33)

where Ihz ∈ Vh is the nodal interpolant of z. From the triangle inequality, approximation
property (20), the fact that (see [4])

‖ηρs− Ih(ηρs)‖1 ≤ Ch
π
ω ,

and Lemma 4.1, one has

‖z − Ihz‖1 ≤ ‖wz − Ihwz‖1 + |λz| ‖ηρs− Ih(ηρs)‖1

≤ Ch‖wz‖2 + Ch
π
ω |λz| ≤ CDh

π
ω ‖w − wh‖.

Substituting this into (33) and dividing ‖w − wh‖ on both sides give

‖w − wh‖ ≤ K2CDh
π
ω ‖w − wh‖1. (34)

Now, it follows Lemma 3.3, orthogonality property (32), and inequality (34) that for any v ∈ Vh

α‖w − wh‖2
1 ≤ a(w − wh, w − wh) + K1‖w − wh‖2

= a(w − wh, w − v) + K1‖w − wh‖2

≤ K2‖w − wh‖1‖w − v‖1 + K1(K2CDh
π
ω )2‖w − wh‖2

1,
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which, together with approximation property (20), implies the validity of the first error bound
in (29) with C6 = 2α−1K2CACR for all h ≤ h0. Here,

h0 = (
α

2K1(K2CD)2
)

ω
2π .

The second error bound in (29) is then a direct consequence of (34) with C7 = C6K2CD.
(ii) Note from (5) and (22) that

λ− λh =
1
B

(w − wh, −L(η2s−))B(2R).

Hence, (30) follows from the Cauchy-Schwarz inequality, Theorem 4.1(i), and Lemma 3.1 that

|λ− λh| ≤ 1
|B|‖w − wh‖ · ‖ − L(η2s−)‖B(2R) ≤ C8h

1+ π
ω ‖f‖

with C8 = C7C5
|B| .

(iii) It follows from (4) and (23) that

u− uh = (w − wh) + (λ− λh)ηρs.

By using the triangle inequality, Lemma 3.1, (29), and (30), we have that

‖u− uh‖1 ≤ ‖w − wh‖1 + |λ− λh| ‖ηρs‖1)

≤ C6h‖f‖+ C8(ρR)
π
ω C2h

1+ π
ω ‖f‖.

Therefore, the first inequality of (31) is valid with C9 = C6 + C8(ρR)
π
ω C2h

π
ω . In a similar

fashion, by Lemma 3.1, (29), and (30), we may prove the validity of the second inequality of
(31) with C10 = C7 + C8C1(ρR)1+ π

ω . This completes the proof of the theorem.

5. NUMERICAL RESULTS

In this section, we carry out several numerical experiments with known solution to check
performance of the algorithm (7) for the Helmholz equations.

Example 1.[Dirichlet boundary problem on Γ shape domain] We consider a polygonal
Γ shape domain ([−1, 1] × [−1, 1]) − ([0, 1] × [−1, 0]). Then the equation (1) has singular
function of the form

s = r
2
3 sin(

2
3
θ).

If we choose forcing function f to be exact solution u = η4s, then the solution u can be
rewritten by

u = w + λη1s

with w = (η4 − η1)s ∈ H2
0 (Ω) and λ = 1. We fix R = 1

8 and note numerical results are
not depend on R < 1. As we proved in previous sections, the algorithm (8) and (9) displays
optimal error decays on Table 1 for K = 1 and on Table 2 for K = −100.
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1/32 1/64 1/128 1/256 1/512 1/1024

‖u− uh‖0 0.00200058 0.000478165 0.000122343 3.06834e-05 7.67792e-06 1.92022e-06

Order 2.064838 1.966577 1.995401 1.998671 1.999444

‖u− uh‖∞ 0.0114182 0.00320753 0.000853718 0.000218068 5.45498e-05 1.36581e-05

Order 1.831801 1.909631 1.968982 1.999132 1.997817

‖u− uh‖1 0.261026 0.126853 0.0643733 0.0322795 0.0161514 0.00807715

Order 1.041036 0.978623 0.995844 0.998959 0.999741

|λ− λh| 0.00697096 0.00126885 6.2799e-05 2.75485e-06 1.05483e-06 1.11547e-07

Order 2.457836 4.336636 4.510696 1.384963 3.241287

TABLE 1. The case ρ = 1 and R = 0.125 on Γ shape domain with K = 1

1/32 1/64 1/128 1/256 1/512 1/1024

‖u− uh‖0 0.00483411 0.000907137 0.000282004 6.99397e-05 1.73996e-05 4.378e-06

Order 2.413858 1.685605 2.011532 2.007057 1.990710

‖u− uh‖∞ 0.0114836 0.00319709 0.000849624 0.000216805 5.42273e-05 1.35786e-05

Order 1.844744 1.911863 1.970426 1.999307 1.997685

‖u− uh‖1 0.264778 0.127094 0.0644238 0.0322856 0.0161521 0.00807725

Order 1.058887 0.980230 0.996703 0.999169 0.999786

|λ− λh| 0.0285257 0.00656459 0.00103929 0.000238555 6.04036e-05 1.47783e-05

Order 2.119485 2.659107 2.123204 1.981616 2.031154

TABLE 2. The case ρ = 1 and R = 0.125 on Γ shape domain with K = −100

REFERENCES

[1] I. BABUSKA, Finite element method for domains with corners, COMPUTING, 6 (1970), 264-273.
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