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STUDY ON THE PERTURBED PIECEWISE LINEAR

SUSPENSION BRIDGE EQUATION WITH VARIABLE

COEFFICIENT

Tacksun Jung and Q-Heung Choi∗

Abstract. We get a theorem that there exist at least two solutions
for the piecewise linear suspension bridge equation with variable
coefficient jumping nonlinearity and Dirichlet boundary condition
when the variable coefficient of the nonlinear term crosses first two
successive negative eigenvalues. We obtain this multiplicity result
by applying Leray-Schauder degree theory.

1. Introduction and statement of main result

The suspension bridge equation is considered as a model of the nonlin-
ear oscillations in differential equation. We consider a one-dimensional
beam of length π suspended by cables. When the cables are stretched,
there is a restoring force which is assumed to be proportional to the
amount of the stretching. But when the beam moves in the opposite di-
rection, then there is no restoring force exerted on it. If u(x, t) denotes
the displacement in the downward direction at position x and time t,
then a simplified model is given by the equations.

utt +K1uxxxx +K2u
+ =W (x) + ϵf(x, t),

u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0,

where u+ = max{0, u}. Let b(x) be a Hölder continuous function. In
this paper we investigate the multiplicity of the piecewise linear suspen-
sion bridge equation with variable coefficient and Dirichlet boundary
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condition

(1.1) utt + uxxxx + b(x)u+ = 1 + ϵh(x, t) in [−π
2
,
π

2
]×R,

(1.2) u(±π
2
, t) = uxx(±

π

2
, t) = 0,

(1.3) u is π − periodic in t and even in x and t,

where u+ = max{0, u}. McKenna and Walter [3] proved that if b(x) =
b constant and 3 < b < 15, then (1.1) with (1.2) and (1.3) has at least
two solutions by degree theory. Choi and Jung [1] also proved that if
3 < b < 15, then (1.1) with (1.2) and (1.3) has at least three solutions
by the variational reduction method, with replacing the condition for
u(t, x) in (1.3) by

(1.4) u is π − periodic in t and even in x.

Micheletti and Saccon [4] proved that there exists a number δk > 0 such
that for any b with Λ−

k −δk < −b < Λ−
k and Λ−

k < Λ−
1 (1.1) with free-ends

boundary conditions, and replacing the right hand side of (1.1) by c > 0
has at least four nontrivial solutions via the critical point theory on the
manifold with boundary induced from the limit relative category of the
torus with one hole. In this paper we improve these results: We prove
that when the variable coefficient of the piecewise linear part crosses first
two successive two negative eigenvalues, (1.1) with (1.2) and (1.3) has
at least two nontrivial solutions.
To state main result explicitly we need the following notations:
The eigenvalue problem

(1.5) utt + uxxxx = λu

with (1.2) and (1.3) has infinitely many eigenvalues

(1.6) λmn = (2n+ 1)4 − 4m2 (m,n = 0, 1, 2, . . .)

and corresponding normalized eigenfunctions ϕmn (m,n ≥ 0) given by

(1.7) ϕ0n =

√
2

π
cos(2n+ 1)x for n ≥ 0,

(1.8) ϕmn =
2

π
cos 2mt cos(2n+ 1)x for m > 0, n ≥ 0.

We note that all eigenvalues in the interval (-19,45) are given by

(1.9) λ20 = −15 < λ10 = −3 < λ00 = 1 < λ41 = 17.
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Let H be the space introduced in section 2.

Theorem 1.1. Let h ∈ H, ∥h∥ = 1 and b(x) is a Hölder continuous
function with −15 < −b(x) < −3. Then there exists ϵ0 > 0 depending
on h and b such that if |ϵ| < ϵ0, problem (1.1) with (1.2) and (1.3) has
at least two nontrivial solutions.

The outline of the proof is as follows: In section 2, we investigate a
priori bound for the solutions and the equilibrium solution of (1.1) with
(1.2) and (1.3). In section 3, we prove Theorem 1.1 by applying the
Leray-Schauder degree theory.

2. A priori bound and the equilibrium solution

Let Q be the square [−π
2
, π
2
]×[−π

2
, π
2
] andH0 the Hilbert space defined

by
H0 = {u ∈ L2(Q)| u is even in x}.

The set of functions {ϕmn} is an orthonormal base in H0. We define a
subspace H of H0 as follows

H = {u ∈ H0| u =
∑

hmnϕmn,
∑

|λmn|h2mn <∞}

with a norm
∥u∥ = [

∑
|λmn|h2mn]

1
2 .

Then this normed spaceH is complete. We are looking for weak solutions
of (1.1) with ( 1.2) and (1.3). A weak solution of (1.1) with (1.2) and
(1.3), which is also called a solution in H, is of the form

u =
∑

cmnϕmn with utt + uxxxx =
∑

λmncmnϕmn ∈ H,

i.e., with
∑
c2mnλ

2
mn < ∞, which implies u ∈ H. Thus a weak solution

of (1.1) with (1.2) and (1.3) is characterized by

(2.1) utt + uxxxx + b(x)u+ = 1 + ϵh(x, t) in H.

Now we consider the eigenvalue problem

yxxxx + b(x)y = Λny in (−π
2
,
π

2
),

y(±π
2
) = y′′(±π

2
) = 0.

McKenna and Walter [2] showed that (2.2) has infinitely many eigen-
values Λn, n ≥ 1, and the corresponding eigenfunctions ψn, n ≥ 1. We
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assume that the eigenfunctions are normalized with respect to H inner
product (the space H is introduced in section 2). Standard eigenvalue
theory gives that

Λ0 < Λ1 ≤ Λ2 ≤ · · · , Λk → +∞ as k → +∞,

ψ0(x) > 0 in Ω.

We have some propositions which are proved in [1].

Lemma 2.1. (i) utt + uxxxx ∈ H implies u ∈ H.
(ii) ∥u∥ ≥ ∥u∥L2 , where ∥u∥L2 denotes the L2 norm of u.
(iii) ∥u∥ = 0 iff ∥u∥L2 = 0.

Lemma 2.2. Let h ∈ H with ∥h∥ = 1 and α > 0 be given. Then
there exists a constant s0 > 0 so large enough that for all s ≥ s0, all
b(x) with −15 + α ≤ −b(x) ≤ 1− α and all ϵ ∈ [−1, 1], the problem

(2.2) utt + uxxxx + b(x)u+ = 1 + ϵh(x, t) + sψ0(x) in H,

has no solution.

Proof. We suppose that the lemma is false. Then there exist a se-
quence (bn(x), ϵn, un) with bn(x) ∈ [−15 + α, 1 − α], |ϵn| ≤ 1 ,un in H
and (sn)n∈N such that limn∈∞sn → +∞ and un are the solutions of

(2.3) un = (Dtt +Dxxxx)
−1(−bn(x)u+n + 1 + ϵnh+ snψ0(x)), in H,

We claim that {un} is unbounded. In fact, if {un} is bounded, then
limn→∞

un

sn
= 0 in Q, strongly in L2(Q) and weakly in H. Dividing (2.3)

by sn, we have

(2.4)
un
sn

= (Dtt +Dxxxx)
−1(−bn(x)(

un
sn

)+ +
1 + ϵnh

sn
+ ψ0(x)).

Passing to the limit to both sides of (2.4), we have that

0 = (Dtt +Dxxxx)
−1(ψ0(x)),

which is a contradiction because the left hand side of the equality is 0,
but the right hand side is not equal to 0. Thus limn→∞ ∥un∥ = ∞. Let
zn = un

∥un∥ . Since {zn} is compact, there exists a subsequence, up to a

subsequence, {zn} such that limn∈N zn = z a.e. in Q, strongly in L2(Q)
and weakly in H. Dividing (2.3) by ∥un∥, we have

(2.5) zn = (Dtt +Dxxxx)
−1(−bn(x)z+n +

1 + ϵnh

∥un∥
) +

sn
∥un∥

ψ0(x)).
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We suppose that limn→∞
sn

∥un∥ = s ≥ 0. Passing to the limit in (2.5), we

obtain that

(2.6) z = (Dtt +Dxxxx)
−1(−b(x)z+ + sψ0(x)).

We claim that (2.6) has only trivial solution z = 0. In fact, we suppose
that z ̸= 0. Multiplying ψ0(x) to both sides of (2.6) and integrating, we
have

0 ≤ s =

∫
Ω

((Dtt +Dxxxx)zψ0(x) + b(x)z+ψ0(x))dx

=

∫
Ω

((Dtt +Dxxxx + b(x))ψ0(x)z
+ − (Dtt +Dxxxx)ψ0(x)z

−)dx,

which is absurd because the right hand side of the above equation is
negative since Λ0 < 0 and −((Dtt +Dxxxx)ψ0(x)z

− = −Dxxxxψ0(x)z
− <

0. Thus z = 0. This is a contradiction since ∥z∥ = 1. We prove the
lemma.

The next lemma established a priori bounds for the solutions of (2.2).

Lemma 2.3. (a priori bound) Let h ∈ H with ∥h∥ = 1 and α > 0
be given. Then there exist a constant C > 0 and s∗ > 0 with s∗ < s0
such that for all s ≤ s∗, all b(x) with −15 + α ≤ −b(x) ≤ 1− α and all
epsilon ∈ [−1, 1], the solutions u of (2.2) satisfy ∥u∥ ≤ C.

Proof. By contradiction, we suppose that there exists a sequence
(bn(x), ϵn, un) with bn(x) ∈ [−15 + α, 1 − α], |ϵn| ≤ 1 ,un in H and
(sn)n∈N such that ∥un∥ → ∞, bn(x) → b(x) ∈ [−15+α, 1−α], sn → s∗,
sn ≤ s∗ and un satisfy the equation

(Dtt +Dxxxx + bn(x)− Λ0)un(2.7)

= 1 + ϵnh(x, t) + (bn(x)− Λ0)u
+
n − (bn(x)− Λ0)u

−
n + snψ0(x).

Let zn = un

∥un∥ . By the compactness of {zn}, there exists z such that

zn → z, and z is a solution of the equation

(2.8) (Dtt +Dxxxx + b(x)− Λ0)z = −Λ0z
+ + Λ0z

− − b(x)z−.

Taking inner product of both sides of (2.8) with ψ0(x), we have

0 = ((Dtt +Dxxxx + b(x)− Λ0, ψ0(x))(2.9)

= (−Λ0z
+ + (Λ0 − b(x))z−, ψ0(x)).
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Since −Λ0z
+ + (Λ0 − b(x))z− ≥ ϵ∥z∥, the right hand side of (2.9) is

bigger than or equal to 0. Thus the only possibility to hold (2.9) is that
z = 0, which is impossible since ∥z∥ = 1. Thus we prove the lemma.

Lemma 2.4. Let h ∈ H, ∥h∥ = 1 and −15+α ≤ −b(x) ≤ 1−α. Then
there exists a constant R > 0 (depending on C which is introduced in
Lemma 2.3) such that any solutions of (2.1) is contained in BR(0) and
the Leray-Schauder degree

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh+ sψ0(x)), BR(0), 0) = 0

for R > C and s ≤ s∗.

Proof. By Lemma 2.2, there exists a constant s0 > 0 such that if
s ≥ s0, (2.2) has no solution. By Lemma 2.3, there exist a constant
C and s∗ > 0 with s∗ < s0 such that if u is a solution of (2.2) with
s < s∗, then ∥u∥ ≤ C. Let us choose R so large that R > C. We
note that u − (Dtt +Dxxxx)

−1(−b(x)u+ + 1 + ϵh + (1 − λ)s0ψ0(x)) ̸= 0
u− (Dtt+Dxxxx+ b(x)−Λ0)

−1(−Λ0u
++(Λ0− b(x))u−+(1−λ)s0ψ0(x))

on ∂BR(0) for 0 ≤ λ ≤ 1. By the homotopy invariance property, we
have that the Leray-Schauder degree

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh+ sψ0(x)), BR(0), 0)

= dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh

+(1− λ)s0ψ0(x)) + λsψ0(x), BR(0), 0)

= dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh+ s0ψ0(x)), BR(0), 0)

= 0,

where 0 ≤ λ ≤ 1. Thus we prove the lemma.

Remark 1. From Lemma 2.4

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh), BR(0), 0) = 0

because 0 < s∗.

Lemma 2.5. For −b(x) < 1 the linear boundary value problem

(2.10) yxxxx + b(x)y = 1 in (−π
2
,
π

2
),

y(±π
2
) = y′′(±π

2
) = 0,

y is even in x

has a unique positive solution y.
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Proof. (2.10) can be rewritten as

(2.11) (Dxxxx − (−b(x)))y = 1

with boundary condition. The operator Dxxxx−(−b(x)) is positive oper-
ator since the eigenvalues of the eigenvalue problem (Dxxxx−(−b(x)))y =
λy with boundary condition has are all > 0. Since the right hand side
of (2.11) is 1 and positive, the unique solution of (2.11) is positive.

Lemma 2.6. For −b(x) < 1 the boundary value problem

(2.12) yxxxx + b(x)y+ = 1 in (−π
2
,
π

2
),

y(±π
2
) = y′′(±π

2
) = 0,

y is even in x

has a positive solution y.

Proof. The unique positive solution y of (2.10) with boundary condi-
tion is also a solution of (2.12).

Lemma 2.7. Let h ∈ H, ∥h∥ = 1 and −15 < −b(x) < −3. Then there
exists a constant η > 0, ϵ0 > 0 such that the Leray-Schauder degree

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh), Bη(y), 0) = −1

for |ϵ| < ϵ0, where y is the positive solution of (2.12)

Proof. (1.1) can rewritten as

(Dtt +Dxxxx + b(x))u = −b(x)u− + 1 + ϵh(x, t).

or

(2.13) u = (Dtt +Dxxxx + b(x))−1(−b(x)u− + 1 + ϵh(x, t)).

Let K be the closure of (Dtt+Dxxxx+ b(x))
−1(B̄), where B̄ is the closed

unit ball centered at y in L2(Ω). Let u be a nontrivial solution of (2.1).
Let u = y + v and ∥v∥ = η. Then v satisfies the equation

(2.14) (Dtt +Dxxxx + b(x))v = −b(x)(y + v)− + ϵh(x, t)

or

(2.15) v = (Dtt +Dxxxx + b(x))−1(−b(x)(y + v)− + ϵh(x, t)).

Let us set β = max |b(x)|. Since ∥(y + v)−∥ < ∥v−∥ ≤ ∥v∥ and

∥ − b(x)(y + v)− + ϵh(x, t)∥ ≤ β∥v∥+ ϵ.
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It follows that

(2.16) v ∈ (ϵ0 + βη)K for |ϵ| < ϵ0.

Since w ∈ K satisfies ∥(ηw − y)+∥ ≤ ηδ(η), we get from (2.16)

∥(v + y)−∥ = ∥(−v − y)+∥ ≤ (ϵ0 + βη)δ(ϵ0 + βη).

We set that ∥(Dtt + Dxxxx + b(x))−1∥ = 1
min{−3+b(x),−b(x)+15} = L. We

choose ϵ0 such that ϵ0 ≤ 1
2L
η. Then the norm of the right hand side of

(2.15) is

∥(Dtt+Dxxxx+b(x))
−1(−b(x)(y+v)−+ϵh(x, t))∥ ≤ 1

2
η+L(

1

2L
η+bη)δ(eta+bη).

We choose η > 0 so small that

∥(Dtt +Dxxxx + b(x))−1(−b(x)(y + v)− + ϵh(x, t))∥ < η.

It follows that for this value of η there is no solution of (2.1) of the
form u = y + v with ∥v∥ = η. The same conclusion holds for solutions
u = y + v of the equation

(Dtt +Dxxxx + b(x))u = 1 + λ(−b(x)u− + ϵh(x, t)).

or

(2.17) u = (Dtt +Dxxxx + b(x))−1(1 + λ(−b(x)u− + ϵh(x, t))),

where 0 ≤ λ ≤ 1. When λ = 1, (2.17) gives the equation (2.1). It follows
from (2.17) that

(2.18) v = (Dtt +Dxxxx + b(x))−1(λ(−b(x)(y + v)− + ϵh(x, t))).

Now we have the same conclusion for the equation (2.18). That is, there
is no solution u = y + v with ∥v∥ = η. Since the Leray-Schauder degree
is invariant under a homotopy, we have

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh), Bη(y), 0)

= dLS(u− (Dtt +Dxxxx + b(x))−1(1 + λ(−b(x)u− + ϵh(x, t))), Bη(y), 0)

= dLS(u− (Dtt +Dxxxx + b(x))−1(1), Bη(y), 0)

= dLS(u− (Dtt +Dxxxx)
−1(1− b(x)u), Bη(y), 0).

The equation (Dtt+Dxxxx)u = −b(x)u+1 has a unique solution u(x, t) =
y(x). Thus

dLS(u− (Dtt +Dxxxx)
−1(1− b(x)u), Bη(y), 0)

= dLS(u+ (Dtt +Dxxxx)
−1(b(x)u), Bη(0), 0).
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The eigenvalues ρ of the operator u + (Dtt + Dxxxx)
−1(b(x)u) are con-

nected with the eigenvalues µ±
n of Dtt +Dxxxx by

u+ (Dtt +Dxxxx)
−1(b(x)u) = ρuorutt + uxxxx =

b(x)

ρ− 1
u

or ρ = 1 + b(x)
µ
. It follows from (1.9) that there is just one negative

eigenvalue which correspond to λ10 = −3. Thus the usual method of
approximating on finite-dimensional subspaces spanned by eigenvectors
with dimension going to infinity shows that the desired degree is −1.
Thus we prove the lemma.

3. Proof of Theorem 1.1

By Lemma 2.4, there exists a large number R > 0 (depending on C)
such that the Leray-Schauder degree

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh+ sψ0(x)), BR(0), 0) = 0

for R > C and s ≤ s∗. By Lemma 2.7, there exists a constant η > 0,
ϵ0 > 0 such that the Leray-Schauder degree

dLS(u− (Dtt +Dxxxx)
−1(−b(x)u+ + 1 + ϵh), Bη(y), 0) = −1

for |ϵ| < ϵ0, where y is the positive solution of (2.12). The Leray-
Schauder degree in the regionBR(0)\Bη(y) is 1, so there exists the second
solution of (1.1) in the region BR(0)\Bη(y). Therefore there exist at least
two solutions of (1.1). Thus we complete the proof.
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