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Abstract

The element-free Galerkin (EFG) method is one of meshless methods, which is an
efficient method of modeling problems of fluid or solid mechanics with complex boundary
shapes and large changes in boundary conditions. This paper discusses the theory of the
EFG method and its applications to modeling of groundwater flow. In the EFG method,
shape functions are constructed based on the moving least square (MLS) approximation,
which requires only a set of nodes. The EFG method can eliminate time-consuming mesh
generation procedure with irregular shaped boundaries because it does not require any
elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary
conditions. A computer code EFGGW was developed and tested for the problems of
steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers.
The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG
method has the advantages in convenient node generation and flexible boundary condition

implementation.
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1.Introduction

Finite element methods (FEM) have been used for many years for modeling
groundwater flow, because it can handle irregular boundaries with reasonable accuracy”.
The FEM requires elements or a mesh to represent problem domain boundaries. The
elements should be of proper sizes and of good shapes in order to obtain accurate
solutions of the problems. When elements of larger sizes or accurate angles are used in
the FEM, the solutions are less accurate with significant numerical errors®. Thus,
construction of a proper mesh is essential to acute solutions in the FEM. The more
complicated boundaries or discontinuities are considered, the more complicated meshes are
required. It is quite burdensome to construct a FEM mesh with elements of proper shapes

for very complicated cases such as fractured aquifer systems. Moving boundary problems



like seepage in an earthen dam requires a re-meshing procedure in each successive time
step, which takes a considerable amount of time. Even though some automatic mesh
generators have been developed, manual work is still needed to complete a proper mesh
for each problem.

To overcome this difficuity, meshless methods have been developed in
astrophysics and solid mechanical engineering approximately two decades ago. These
methods only require a set of nodes and description of boundaries to obtain approximate
solutions of the problems. Some examples of meshless methods are the smooth particle
hydrodynamics method”, the diffuse element methodm, the element-free Galerkin (EFQ)
method®, the reproducing kernel particle method”, and the partition of unity method”.
Belytschko et al” reviewed and classified various meshless methods.

In the meshless methods, the EFG method is more stable and consistent than the
other methods. The EFG method is also conceptually easier to understand and program
computer codes than are other methods. Belytschko et al.” demonstrated some examples in
modeling of growing cracks and large deformation in solid mechanical engineering by
using the EFG method.

The EFG method uses the moving least square (MLS) approximations” to
construct the discrete equations. The MLS approximations are based upon a weight
function. a polynomial basis, and a set of coefficients. A weight function has a compact
support that defines the influence domain of each node as shown in Figure 1. The nodal

connectivity is defined by overlapping of the influence domains of nodes.

Nodal domain of influence
(compact

l Node

Evaluation point

Boundarv

Figure 1. Domain of influence in two~dimensions using a circular compact support.

2. Element-Free Galerkin Method

The hydraulic head #A(x) of groundwater in an aquifer system can be

approximated with the moving least square (MLS) method. the MLS approximation 12(x)



for h(x) can be defined as
h(x, )= Zpi(x) ai(x, D=p"(x)alx, (0

where p(x) represents a polynomial basis of arbitrary order m and a(x) represents a set
of coefficients which are functions of the space coordinate X and time t. The unknown
coefficients a(x) are determined by the minimizing the difference between the
approximation /(x) and the hydraulic head k(x) at the point x. The coefficient a(x,t) can

be estimated as

alx, ) =A""(2) B(x)h(D )
where

A(x) = ,Z w(x—x)p(x)p " (x;), 3)
B(x)=[ wlx—x)p(x;) wlx—x)p(x0) ... wlx—x)p(x)], (4)
R =10h(D h(d)-... kD] (5)

The weight function in Equation (3) and (4) should be carefully chosen to
guarantee the connectivity of nodes”. The continuity of the shape function in the EFG
method is dependent to the continuity of the weight function. the weight function

w(x—x;) is positive at the compact support of jth node and decrease monotonically as
lx— x| increases. Each node has positive influence only in the compact support. The

compact support of each mode should be larger enough to satisfy the connectivity between

nodes.

Substituting Equation (2) into Equation (1) leads the MLS approximation to
Rz 0= 20T A D B0 b= 20D (6)
From Equation (6), the shape function (or the basis function) @{x) is defined as
0x)= 23pd0) (A™ (D B(x) = PT(x) A(\)™'B(») @
where the MLS approximation of shape function h(x,t) can be expressed as
Rz, D= 230,(x) hi(§) = D)D), (8)

The governing partial differential equation (PDE) and boundary conditions for

transient groundwater flow in a two-dimensional confined aquifer is given by

v-(th)+R=S% in Q 9)
(TVvh)-n=gqgon I, (10)
h=hon T, (11)

where ©Vis a vector differential operator, T is transmissivity, h is hydraulic head, I? is a
source or sink strength, S is storativity, and t is time.

By Galerkin method with the MLS approximation #(x), the governing PDE and



boundary conditions can be expressed as

fo[T,; gf%]+ff9[s"’7’f]mg= ff{T,—ng— n,]@dF—fLR(Dd.Q (12)
7 1 7

where 1,j=1,2 for two-dimensional Cartesian coordinates.
The MLS approximations do not satisfy Kronecker delta property at the Dirichlet

boundary, which causes difficulties in dealing with the Dirichlet boundary conditions.
Belvtschko et al'" developed a coupling technique with the fimite element method to deal
with Dirichlet boundary conditions. The Coupled EFG-FEM technique employs interface
elements, where the EFG and FEM shape functions are combined.

3. Conclusion

A FORTRAN code EFGGW was developed to simulate groundwater flow
problems and tested with confined and unconfined aquifer systems. The code was revised
to simulate groundwater flow in fractured aquifer systems. Solutions by the EFG method
was similar in accuracy to that by the FEM, '_F‘he versatility of the EFG method was
better than that of the EFM in the problems with arbitrary shaped boundaries.

The most attactive features of the EFG method aré flexible node generation and
elimination of time-consuming meshing procedure. Especially, the EFG method can handle

complicated boundaries in the problems of groundwater flow in fractured aquifer systems.
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