• Title/Summary/Keyword: Direct methanol

Search Result 397, Processing Time 0.024 seconds

Quantification of Methanol Concentration in the Polymer Electrolyte Membrane of Direct Methanol Fuel Cell by Solid-state NMR

  • Kim, Seong-Soo;Paik, Youn-Kee;Kim, Sun-Ha;Han, Oc-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.96-102
    • /
    • 2008
  • Direct quantification of methanol in polymer electrolyte membrane (PEM) by solid-state nuclear magnetic resonance (NMR) spectroscopy was studied and the methanol concentrations in PEM produced by crossover and diffusion were compared. The error range of the quantification was not smaller than ${\pm}15%$ and the amount of the methanol crossed over in our direct methanol fuel cells (DMFCs) was less than the methanol diffused to PEM. The methanol concentration in the PEM of the DMFC operated at different current densities were equivalent.

Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles (외부온도가 수송용 메탄올연료전지 성능에 미치는 영향)

  • Han, Chang-Hwa;Jung, Dae-Seung;Choi, Ji-Sun;Han, Sang-Hun;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Self-Assembly Modification of Perfluorosulfonic Acid Membranes for the Application to Direct Methanol Fuel Cells

  • Moon, Go-Young;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.524-531
    • /
    • 2008
  • The mitigation or elimination of methanol crossover for perfluorosulfonic acid fuel cell membranes has been investigated extensively for direct methanol fuel cell applications with the aim of increasing the electrochemical performance and enhancing the utilization rate of methanol. Self-assembly modifications by applying an oppositely charged polyelectrolyte to Nafion membranes were attempted in order to block or reduce methanol crossover while maintaining the other advantageous properties of Nafion membranes. It was reported that anionic polyallylamine hydrochloride (PAH) was the most efficient polyelectrolyte in reducing methanol crossover, and considerable cell performance was obtained even at a methanol feed concentration of 10 M.

Impurities in the methanol fuel on the performance of direct methanol fuel cell (직접메탄올 연료전지의 성능에 미치는 메탄올 연료의 불순물)

  • Peck, Dong-Hyun;Lee, Jae-Hyuk;Park, Young-Chul;Lim, Seongyop;Kim, Sang-Kyung;Jung, Doo-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.1-124.1
    • /
    • 2010
  • The impurities in the methanol fuel that is used for direct methanol fuel cell (DMFC) could greatly affect the performance of membrane electrode assemblies (MEA). The most common impurities in the commercial methanol fuel are mainly ethanol, acetone, acetaldehyde, or ammonia. In this study, the effect of impurities in methanol fuel was investigated on the performance of MEA. The MEA for DMFC were prepared using a semi-automatic bar-coating machine, which can prepare the catalyst layer with uniform thickness for MEA. As a result, a single cell supplied with one of the 6 different kinds of methanol fuels showed a significant degradation of the fuel cell performance. The most common impurities in the commercial methanol fuel is mainly ethanol, acetone, acetaldehyde, or ammonia. The effects of the kind and the concentration of impurities in the methanol fuels were investigated on the performance of MEA for DMFC. We will propose the optimum compositions and limit concentration of impurities in methanol fuel for high performance of MEA for DMFC.

  • PDF

Water management for vapor-fed direct methanol fuel cells (수동급기 직접 메탄올 연료전지의 공기극 물 관리)

  • Chang, Ik-Whang;Ha, Seung-Bum;Cha, Suk-Won;Lee, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.319-322
    • /
    • 2009
  • This paper investigated environmental effects for passive, air-breathing, and vapor-feeding direct methanol fuel cells. In these experiments, experimental parameters are temperature($30^{\circ}C$, $40^{\circ}C$ and relative humidity(25%, 50%, 75%). From these experimental results, the water contents play a key role in terms of optimal ionic conductivity at the cathode catalyst layer. In case of pure methanol feeding, the performance is inversely proportional to the relative humidity. The water generation resulting from methanol crossover maintains ionic conductivity at the cathode. On the contrary, diluted methanol solution (50wt.%) lowers methanol crossover to the cathode. In order to increase ionic conductivity, the relatively high humidity is required to the cathode catalyst layer for the water generation. The relative humidity scales with the performance.

  • PDF

Performance evaluation by flow channel effect for a passive air-breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 유로에 따른 성능 평가)

  • Chang, Ikw-Hang;Ha, Seung-Bum;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.45-48
    • /
    • 2008
  • This paper presents a passive air-breathing direct methanol fuel cell (DMFC) which has been designed and tested. The single cell is fuelled by methanol vapor that is supplied through flow channel from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The methods for supplying the methanol vapor to the single cell were parallel channel and chamber. This research investigates various methods to identify the effects of using flow channels for providing the methanol vapor at the anode, and the opening ratio between the inlet and outlet ports for the methanol flow at the anode. The best flow channel condition for passive DMFC was a chamber, and the opening ratio was 0.8. Under these conditions, the peak power was 10.2mW/$cm^2$ at room temperature and ambient pressure. The key issues for the Passive DMFCs for using methanol vapor are that sufficient methanol needs to be supplied using a large as possible opening ratio. However, it is shown that the performance of the passive DMFC, which has a channel at the anode,is low due to the low differential pressure and insufficient methanol supply rate.

  • PDF

Phosphate-decorated Pt Nanoparticles as Methanol-tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells

  • Choi, Jung-goo;Ham, Kahyun;Bong, Sungyool;Lee, Jaeyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.354-361
    • /
    • 2022
  • In a direct methanol fuel cell system (DMFC), one of the drawbacks is methanol crossover. Methanol from the anode passes through the membrane and enters the cathode, causing mixed potential in the cell. Only Pt-based catalysts are capable of operating as cathode for oxygen reduction reaction (ORR) in a harsh acidic condition of DMFC. However, it causes mixed potential due to high activity toward methanol oxidation reaction of Pt. To overcome this situation, developing Pt-based catalyst that has methanol tolerance is significant, by controlling reactant adsorption or reaction kinetics. Pt/C decorated with phosphate ion was prepared by modified polyol method as cathode catalyst in DMFC. Phosphate ions, bonded to the carbon of Pt/C, surround free Pt surface and block only methanol adsorption on Pt, not oxygen. It leads to the suppression of methanol oxidation in an oxygen atmosphere, resulting in high DMFC performance compared to pristine Pt/C.

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes (삼전극으로 구성된 막전극접합체를 이용한 직접메탄올 연료전지의 실시간 과전압 분석)

  • Jung, Namgee;Cho, Yoon-Hwan;Cho, Yong-Hun;Sung, Yung-Eun
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.330-336
    • /
    • 2018
  • In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.

Reduction of Methanol Crossover in a Direct Methanol Fuel Cell by Using the Pt-Coated Electrolyte Membrane

  • Jung, Eun-Mi;Rhee, Young-Woo;Peck, Dong-Hyun;Lee, Byoung-Rok;Kim, Sang-Kyung;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A Pt-layer was deposited on the anode side of a Nafion membrane via a sputtering method in order to reduce methanol crossover in a direct methanol fuel cell (DMFC). The methanol permeation and the proton conductivity through the modified membranes were investigated. The performances of the direct methanol fuel cell were also tested using single cells with a Nafion membrane and the modified membranes. The Pt-layers on the membrane blocked both methanol crossover and proton transport through the membranes. Methanol permeability and proton conductivity decreased with an increase of the platinum layer thickness. At methanol concentration of 2 M, the DMFC employing the modified membrane with a platinum layer of 66 nm-thickness showed similar performance to that of a DMFC with a bare Nafion membrane in spite of the lower proton conductivity of the former. The maximum power density of the cell using the modified membrane with a platinum layer of 66 nm-thickness increased slightly while that of the cell with the bare membrane decreased abruptly when a methanol solution of 6M was supplied.