Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.330

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes  

Jung, Namgee (Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Yoon-Hwan (School of Chemical and Biological Engineering, Seoul National University)
Cho, Yong-Hun (Department of Chemical Engineering, Kangwon National University)
Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 330-336 More about this Journal
Abstract
In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.
Keywords
direct methanol fuel cell; in-situ analysis; three-electrode cell; overpotential;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. K. Kamarudin, F. Achmad, and W. R. W. Daud, Int. J. Hydrogen Energy, 34, 6902 (2009).   DOI
2 T. Zhao, C. Xu, R. Chen, and W. Yang, Prog. Energy Combust. Sci., 35, 275, (2009).   DOI
3 J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim, Nano Energy, 2, 553 (2013).   DOI
4 J. Xie, Q. Zhang, L. Gu, S. Xu, P. Wang, J. Liu, Y. Ding, Y. F. Yao, C. Nan, and M. Zhao, Nano Energy, 21, 247 (2016).   DOI
5 N. Jung, Y.-H. Cho, K.-H. Choi, J. W. Lim, Y.-H. Cho, M. Ahn, Y. S. Kang, and Y-E. Sung, Electrochem. Commun., 12, 754 (2010).   DOI
6 S. C. Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, Electrochim. Acta, 47, 3741 (2002).   DOI
7 A. Omosebi and R. S. Besser, J. Power Sources, 228, 151 (2013).   DOI
8 D. Sebastian, A. Serov, I. Matanovic, K. Artyushkova, P. Atanassov, A. Arico, and V. Baglio, Nano Energy, 34, 195 (2017).   DOI
9 M. Ahmed and I. Dincer, Int. J. Energy Res., 35, 1213 (2011).   DOI
10 S. Wu, J. Liu, D. Liang, H. Sun, Y. Ye, Z. Tian, and C. Liang, Nano Energy, 26, 699 (2016).   DOI
11 S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang, and H. Gu, Nanoscale, 9, 1033 (2017).   DOI
12 X.-L. Sui, C.-Z. Li, L. Zhao, Z.-B. Wang, D.-M. Gu, and G.-S. Huang, Int. J. Hydrogen Energy, 43, 5153 (2018).   DOI
13 Z. Chen, Y.-C. He, J.-H. Chen, X.-Z. Fu, R. Sun, Y.-X. Chen, and C.-P. Wong, J. Phys. Chem. C, 122, 8976, (2018).   DOI
14 J. Wang, G. Yin, G. Wang, Z. Wang, and Y. Gao, Electrochem. Commun., 10, 831 (2008).   DOI
15 Y.-H. Cho, O.-H. Kim, D. Y. Chung, H. Choe, Y.-H. Cho, and Y.-E. Sung, Appl. Catal. B Environ., 154-155, 309 (2014).   DOI
16 J.-N. Zheng, L.-L. He, F.-Y. Chen, A.-J. Wang, M.-W. Xue, and J.-J. Feng, Electrochim. Acta, 137, 431 (2014).   DOI
17 N. Jung, Y.-H. Cho, M. Ahn, J. W. Lim, Y. S. Kang, D. Y. Chung, J. Kim, Y.-H. Cho, and Y.-E. Sung, Int. J. Hydrogen Energy, 36, 15731 (2011).   DOI
18 D. Jung, S. Cho, D. Peck, D. Shin, and J. Kim, J. Power Sources, 118, 205 (2003).   DOI
19 A. Casalegno, F. Bresciani, V. Di Noto, C. Casari, A. L. Bassi, E. Negro, R. Marchesi, and F. Di Fonzo, Int. J. Hydrogen Energy, 39, 2801 (2014).   DOI
20 S. Yoon, G. Hwang, W. Cho, I.-H. Oh, S.-A. Hong, and H. Ha, J. Power Sources, 106, 215 (2002).   DOI
21 G. Li and P. G. Pickup, J. Power Sources, 161, 256 (2006).   DOI
22 A. Kuver, I. Vogel, and W. Vielstich, J. Power Sources, 52, 77 (1994).   DOI
23 P. Piela, T. E. Springer, J. Davey, and P. Zelenay, J. Phys. Chem. C, 111, 6512 (2007).   DOI
24 Z. Siroma, R. Kakitsubo, N. Fujiwara, T. Ioroi, S.-I. Yamazaki, and K. Yasuda, J. Power Sources, 156, 284 (2006).   DOI
25 C. Xu, Y. L. He, T. S. Zhao, R. Chen, and Q. Ye, J. Electrochem. Soc., 153, A1358 (2006).   DOI
26 K. Scott, P. Argyropoulos, and K. Sundmacher, J. Electroanal. Chem., 477, 97 (1999).   DOI
27 S. H. Seo and C. S. Lee, Energy Fuels, 22, 1212 (2008).   DOI