Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok (Department of Applied Chemistry, Sejong University) ;
  • Yoo Ji-Young (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Kang Moon-Sung (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Kang Yong-Soo (School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2006.08.01

Abstract

Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

Keywords

References

  1. V. Tricoli, N. Carretta, and M. Bartolozzi J. Electrochem. Soc., 147, 1286 (2000) https://doi.org/10.1149/1.1393351
  2. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliaguine, J. Polym. Sci.; Part A: Polym. Chem., 42, 2866 (2004) https://doi.org/10.1002/pola.20152
  3. K. W. Böddeker, K. V. Peinemann, and S. P. Nunes, J. Membr. Sci., 185, 1 (2001) https://doi.org/10.1016/S0376-7388(00)00630-X
  4. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci., Polym. Phys., 19, 1687 (1981) https://doi.org/10.1002/pol.1981.180191103
  5. K. A. Mauritz and R. B. Moore, Chem. Rev., 104, 4535 (2004) https://doi.org/10.1021/cr0207123
  6. J. Szejtli, Chem. Rev., 98, 1743 (1998) https://doi.org/10.1021/cr970022c
  7. K. Kuranuk, M. Suzuki, M. Ohono, K. Takeyama, T. Tanigami, K. Yamaura, and S. Matsuzawa, Rep. Poval Committee, 93, 70 (1988)
  8. B. S. Pivovor, Y. Wang, and E. L. Cussler, J. Membr. Sci., 154, 155 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6
  9. S. Y. Kim, H. S. Shin, Y. M. Lee, and C. N. Jeong, J. Appl. Polym. Sci., 73, 1675 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  10. A. Yamasaki, K. Ogasawara, and K. Mizoguchi, J. Appl. Polym. Sci., 54, 867 (1994) https://doi.org/10.1002/app.1994.070540705
  11. A. Yamasaki and K. Mizoguchi, J. Appl. Poly. Sci., 53, 1669 (1994) https://doi.org/10.1002/app.1994.070531213
  12. T. Miyata, T. Iwamoto, and T. Uragami, J. Appl. Polym. Sci., 51, 2007 (1994) https://doi.org/10.1002/app.1994.070511204
  13. H. L. Chen, L. G. Wu, J. Tan, and C. L. Zhu, Chem. Eng. J., 78, 159 (2000) https://doi.org/10.1016/S1385-8947(00)00154-6
  14. H. Eddaoudi, A. Deratani, S. Tingry, F. Sinan, and P. Seta, Polym. Int., 52, 1390 (2003) https://doi.org/10.1002/pi.1240
  15. M. S. Kang, J. H. Kim, J. Won, S. H. Moon, and Y. S. Kang, J. Membr. Sci., 24, 127 (2005)
  16. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b
  17. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I. H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  18. H.D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006) https://doi.org/10.1007/BF03218512
  19. M. A. Vargas, R. A. Vargas, and B. E. Mellander, Electrochim. Acta, 44, 4227 (1999) https://doi.org/10.1016/S0013-4686(99)00137-1
  20. J. Kim, B. Kim, B. Jung, Y. S. Kang, H. Y. Ha, I. H. Oh, and K. J. Ihn, J. Macromol. Rapid Commun., 23, 753 (2002) https://doi.org/10.1002/1521-3927(20020901)23:13<753::AID-MARC753>3.0.CO;2-G
  21. V. Tricoli, J. Electrochem. Soc., 145, 3798 (1998) https://doi.org/10.1149/1.1838876
  22. N. Carretta, V. Tricoli, and F. Picchioni, J. Membr. Sci., 166, 189 (2000) https://doi.org/10.1016/S0376-7388(99)00258-6
  23. D. S. Kim, H. B. Park, C. H. Lee, Y. M. Lee, G. Y. Moon, S. Y. Nam, H. S. Hwaing, T. I. Yun, and J. W. Rhim, Macromol. Res., 13, 314 (2005) https://doi.org/10.1007/BF03218459
  24. M. S. Kang, Y. J. Choi, and S. H. Moon, J. Membr. Sci., 207, 157 (2002) https://doi.org/10.1016/S0376-7388(02)00172-2
  25. B. Smitha, S. Sridhar, and A. A. Khan, Macromolecules, 37, 2233 (2004) https://doi.org/10.1021/ma0355913
  26. J. Wang, M. Wei, G. Rao, D. G. Evans, and X. Duan, J. Solid State Chem., 177, 366 (2004) https://doi.org/10.1016/j.jssc.2003.09.006
  27. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030
  28. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, J. Membr. Sci., 240, 37 (2004) https://doi.org/10.1016/j.memsci.2004.04.010
  29. K. Tashiro and H. Hama, Macromol. Res., 12, 1 (2004) https://doi.org/10.1007/BF03218988
  30. X. Zhou, J. Weston, E. Chalkova, M. A. Hofmann, C. M. Ambler, H. R. Allcock, and S. N. Lvov, Electrochim. Acta, 48, 2173 (2003) https://doi.org/10.1016/S0013-4686(03)00201-9