Self-Assembly Modification of Perfluorosulfonic Acid Membranes for the Application to Direct Methanol Fuel Cells

  • Published : 2008.08.31

Abstract

The mitigation or elimination of methanol crossover for perfluorosulfonic acid fuel cell membranes has been investigated extensively for direct methanol fuel cell applications with the aim of increasing the electrochemical performance and enhancing the utilization rate of methanol. Self-assembly modifications by applying an oppositely charged polyelectrolyte to Nafion membranes were attempted in order to block or reduce methanol crossover while maintaining the other advantageous properties of Nafion membranes. It was reported that anionic polyallylamine hydrochloride (PAH) was the most efficient polyelectrolyte in reducing methanol crossover, and considerable cell performance was obtained even at a methanol feed concentration of 10 M.

Keywords

References

  1. A. S. Arico, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001) https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  2. M. P. Hogarth and T. R. Ralph, Platinum Metals Rev., 46, 146 (2002)
  3. J. Kerres, W. Zhang, L. Jorissen, and V. Gogel, J. New. Mat. Electrochem. Systems, 5, 97 (2002)
  4. H. Wu, Y. Wang, and S. Wang, J. New. Mat. Electrochem. Systems, 5, 251 (2002)
  5. C. Manea and M. Mulder, J. Membr. Sci., 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  6. J. Kim, B. Kim, and B. Jung, J. Membr. Sci., 207, 129 (2002) https://doi.org/10.1016/S0376-7388(02)00138-2
  7. C. W. Walker Jr., J. Power Sources, 110, 144 (2002) https://doi.org/10.1016/S0378-7753(02)00236-7
  8. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci., 203, 215 (2002) https://doi.org/10.1016/S0376-7388(02)00009-1
  9. J. Feichtinger, R. Galm, M. Walker, K.-M. Baumgartner, A. Schulz, E. Rauchle, and U. Schumacher, Surf. Coatings Tech., 142-144, 181 (2001) https://doi.org/10.1016/S0257-8972(01)01070-2
  10. F. Finsterwalder and G. Hambitzer, J. Membr. Sci., 185, 105 (2001) https://doi.org/10.1016/S0376-7388(00)00638-4
  11. Z.-G. Shao, X. Wang, and I.-M. Hsing, J. Membr. Sci., 210, 147 (2002) https://doi.org/10.1016/S0376-7388(02)00386-1
  12. P. Dimitrova, K. A. Friedrich, U. Stimming, and B. Vogt, Solid State Ionics, 150, 115 (2002) https://doi.org/10.1016/S0167-2738(02)00267-9
  13. K. Scott, W. M. Taama, and P. Argyropoulos, J. Membr. Sci., 171, 119 (2000) https://doi.org/10.1016/S0376-7388(99)00382-8
  14. C. Yang, S. Srinivasan, A. S. Arico, P. Creti, and V. Baglio, Electrochem. Solid-State Lett., 4, A31 (2001) https://doi.org/10.1149/1.1353157
  15. N. Jia, M. C. Lefebvre, J. Halfyard, Z. Qi, and P. G. Pickup, Electrochem. Solid-State Lett., 3, 529 (2000) https://doi.org/10.1149/1.1391199
  16. T. Yamaguchi, M. Ibe, B. N. Nair, and S. Nakao, J. Electrochem. Soc., 149, A1448 (2002) https://doi.org/10.1149/1.1512912
  17. V. Baglio, A. S. Arico, A. Di Blasi, V. Antonucci, P. L. Antonucci, S. Licoccia, E. Traversa, and F. Serraino Fiory, Electrochim. Acta, 50, 1241 (2005) https://doi.org/10.1016/j.electacta.2004.07.049
  18. H. Sun, G. Sun, S. Wang, J. Liu, X. Zhao, G. Wang, H. Xu, S. Hou, and Q. Xin, J. Membr. Sci., 259, 27 (2005) https://doi.org/10.1016/j.memsci.2005.02.017
  19. W. C. Choi, J. D. Kim, and S. I. Woo, J. Power Sources, 96, 411 (2001) https://doi.org/10.1016/S0378-7753(00)00602-9
  20. D. DeLongchamp and P. Hammond, Chem. Mater., 15, 1165 (2003) https://doi.org/10.1021/cm020945a
  21. H. Tang, M. Pan, S. Jiang, Z. Wan, and R. Yuan, Eng. Aspects, 262, 65 (2005) https://doi.org/10.1016/j.colsurfa.2005.04.011
  22. S. Mu, H. Tang, Z. Wan, M. Pan, and R. Yuan, Electrochem. Commun., 7, 1143 (2005) https://doi.org/10.1016/j.elecom.2005.08.019
  23. G. Y. Moon and J. W. Rhim, Macromol. Res., 15, 379 (2007) https://doi.org/10.1007/BF03218802
  24. D. S. Kim and M. D. Guiver, et al., Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807