• Title/Summary/Keyword: Direct Digital Synthesizer

Search Result 77, Processing Time 0.034 seconds

The direct digital frequency synthesizer of QD-ROM reduction using the differential quantization (차동 양자화를 사용한 QD-ROM 압축 방식의 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Lim, So-Young;Lee, Ho-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.192-198
    • /
    • 2007
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is stored by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). To reduce the ROM size, we use the differential quantization technique with this two ROM. First, we quantize the quarter sine wave with the $2^L$ address and store the quantized value at the Q-ROM. Second, after the $2^L$ address are equally divided into $2^M$ sampling intervals, the sampling value is quantized. And the D-ROM store only the difference between this quantized value and the Q-ROM. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is affected mostly by this ROM reduction.

  • PDF

Ultra Low Noise Hybrid Frequency Synthesizer for High Performance Radar System (고성능 레이다용 저잡음 하이브리드 주파수합성기 설계 및 제작)

  • Kim, Dong-Sik;Kim, Jong-Pil;Lee, Ju-Young;Kang, Yeon Duk;Kim, Sun-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.73-79
    • /
    • 2020
  • Modern radar system requires high spectral purity and low phase noise characteristics for very low RCS target detection and high resolution SAR (Synthetic Aperture Radar) image. This paper presents a new X-band high stable frequency synthesizer for high performance radar system, which combines DAS (Direct Analog Synthesizer) and DDS (Direct Digital Synthesizer) techniques, in order to cope with very low phase noise and high frequency agility requirements. This synthesizer offers more than 10% operating bandwidth in X-band frequency and fast agile time lower than 1 usec. Also, the phase noise at 10kHz offset is lower than -136dBc/Hz, which shows an improvement of more than 10dB compared to the current state of art frequency synthesizer. This architecture can be applied to L-band and C-band application as well. This frequency synthesizer is able to used in modern AESA (Active Electronically Scanned Array) radar system and high resolution SAR application.

Effective ROM Compression Methods for Direct Digital Frequency Synthesis (직접 디지털 주파수 합성을 위한 효율적인 ROM 압축 방법)

  • 이진철;신현철
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.9
    • /
    • pp.536-542
    • /
    • 2004
  • An architecture of direct digital frequency synthesizers (DDFS) is studied in this paper The Direct digital frequency synthesizers (DDFS) provide fast frequency switching with high spectral purity and are widely used in modern spread spectrum wireless communication systems. ROM-based DDFS uses a ROM lookup table to store the amplitude of a sine wave. In this paper, we suggest three new techniques to reduce the ROM size. One new technique uses more number of hierarchical levels in ROM structures. Another techniques use simple interpolation techniques combined with hierarchical ROM structures. A 12 bit sine wave is generated by using these techniques. Experimental results show that the new proposed techniques can reduce the required ROM size by up to 24%, when compared to that of a resent method[1].

A Frequency Synthesizer for Ka band compact Radar using DDS (DDS를 이용한 Ka 대역 소형 레이다용 주파수합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak;Kwon, Jun-Beom;Choi, Young-Rak;Kim, Jong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we designed a frequency synthesizer using DDS (Direct Digital Synthesizer) for Ka-band compact Radar. DDS is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and Ka band frequency up-converter are integrated in one module. Proposed frequency synthesizer provides LFM(Linear Frequency Modulation) waveform and Phase modulated FMCW (Frequency Modulation Continuous Wave) waveform. It is observed that fabricated synthesizer performs $0.191{\mu}sec$ frequency switching time and -89.16 dBc/Hz phase noise at offset 1 kHz.

Design and Modeling of a DDS Driven Offset PLL with DAC (DAC를 적용한 DDS Driven Offset PLL모델링 및 설계)

  • Kim, Dong-Sik;Lee, Hang-Soo;Kim, Jong-Pil;Kim, Seon-Ju
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we presents the modeling and implementation of the DDS(Direct Digital synthesizer) driven offset PLL(Pghase Locked Loop) with DAC(Digital Analog Converter) for coarse tune. The PLL synthesizer was designed for minimizing the size and offset frequency and DDS technique was used for ultra low noise and fast lock up time, also DAC was used for coarse tune. The output phase noise was analyzed by superposition theory with the phase noise transfer function and noise source modeling. the phase noise prediction was evaluated by comparing with the measured data. The designed synthesizer has ultra fast lock time within 6 usec and ultra low phase noise performance of -120 dBc/Hz at 10KHz offset frequency.

A Design Technique to Reduce DDS ROM Size and Its Implementation (ROM 사이즈 저감을 위한 DDS 설계기법 및 구현)

  • Jeon, Man-Young;Lee, Haeng-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1053-1056
    • /
    • 2005
  • This paper proposes a design technique of DDS (Direct Digital Synthesizer) to reduce the ROM size, and also describes the procedure of the implementation of the technique. Unlike other techniques suggested so far, the proposed technique is able to reduce the ROM size to a great extent with minimal hardware overheads. The frequencies of the signal synthesized by the implemented DDS accurately changed with the applied frequency control words.

  • PDF

A Wideband DDS Module for High-Speed Frequency Synthesizer (고속 주파수 합성기용 광대역 DDS 모듈)

  • Park, Beom-Jun;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1243-1250
    • /
    • 2014
  • In this paper, a wideband DDS module covering the frequency range from 0.5 to 1.1 GHz was designed and fabricated. The clock frequency of the DDS was selected 2.4 GHz in order for 600 MHz output bandwidth. Multiple spurious cancelling signals having same amplitude and $180^{\circ}$ phase difference compared to the spurious were created at the additional path and added to the output signal within DDS for the spurious performance improvement. The fabricated DDS module showed better spurious performance than the commercial DDS one more than 10 dB and frequency tuning time was 340 ns below.

A Design and Performance Analysis of the Fast Scan Digital-IF FFT Receiver for Spectrum Monitoring (스펙트럼 감시를 위한 고속 탐색 디지털-IF FFT 수신기 설계 및 분석)

  • Choi, Jun-Ho;Nah, Sun-Phil;Park, Cheol-Sun;Yang, Jong-Won;Park, Young-Mi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • A fast scan digital-IF FFT receiver at the radio communication band is presented for spectrum monitoring applications. It is composed of three parts: RF front-end, fast LO board, and signal processing board. It has about 19GHz/s scan rate, multi frequency resolution from 10kHz to 2.5kHz, and high sensitivity of below -99dBm. The design and performance analysis of the digital-IF FFT receiver are presented.

Performance Analysis of Modulator using Direct Digital Frequency Synthesizer of Initial Clock Accumulating Method (클록 초기치 누적방식의 직접 디지털 주파수 합성기를 이용한 변조기의 성능해석)

  • 최승덕;김경태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.128-133
    • /
    • 1998
  • This paper is study on performance analysis of modulator using direct digital frequency synthesizer of Initial Clock Accumulating Method. It has been generally used for PLL or digital frequency synthesizing method to be synthesizd randomly chosen frequency state. In order to improve disadvantage of two methods, we constructed modulator system using DDFS of Initial Clock Accumulating Method. We also confirmed the coherence frequency hopping state and possibility of phase control. The results obtained from the experiments are as follows; First, the synthesized output frequency is proportional to the sampling frequency, according to index, K. Second, the difference of the gain between the basic frequency and the harmonic frequencies was more than 50 [dB], that is, this means facts that is reduced the harmonic frequency factor. Third, coherence frequency hopping state is confirmed by PN code sequence. Here, we confirmed the proposed method cut switching time, this verify facts that is the best characteristic of the frequency hopping. We also verified the fact that the phase varies as the adder is operated set or reset.

  • PDF

Design and Implementation of Direct Digital Frequency Synthesizer Using Reduced ROM Size Algorithm (ROM 축소 알고리즘을 이용한 직접 디지털 주파수 합성기의 설계 및 구현)

  • Kim, Jong-Hyeon;Do, Jae-Cheol;Song, Yeong-Seok;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.946-949
    • /
    • 2003
  • In this paper, a DDFS(Direct Digital Frequency Synthesis)chip has been designed focusing on the reduction of ROM size and implemented using FPGA. When calculating the sine value for the input phase value, we used the Taylor series expansion approximation method to reduce the number of addresses of ROM. We also used the piecewise straight line approximation method, ie, the stored value int the ROM is the difference of the sine value and the straight line approximation. Using this method, we could reduce four bits for each ROM data.

  • PDF