• Title/Summary/Keyword: Dimensional Tolerance

Search Result 171, Processing Time 0.025 seconds

Analysis of the Warm Shrink Fitting Process for Assembling the Part(Shaft and Output Gear) (단품(축/OUTPUT 기어)조립을 위한 온간압입공정 해석)

  • Kim, Tae-Jin;Kang, Hee-Jun;Kim, Chul;Chu, Suck-Jae;Kim, Ho-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.47-54
    • /
    • 2008
  • Fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for the automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes in both the outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop an optimization technique of the warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field was in good agreements with the results obtained by the theoretical and finite element analysis.

Protein Profiles in Response to Salt Stress in Seedling of Salt Tolerant Rice Mutants

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Lee, Young-Keun;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • Proteomic analysis was performed in order to identify proteomic changes by salt stress between the Japonica cv. Donganbyeo (WT) and two salt-tolerant (ST) mutant lines by using the SDS-PAGE and 2-DE. Two salt tolerant rice mutant lines, ST-87 and ST-301, were selected by in vitro mutagenesis with gamma-ray. Three-week-old seedlings were treated with 171 mM NaCl for 7 days. In the SDS-PAGE, three proteins with molecular weights of 27, 46 and 58 kDa were highly increased under salt treatment. Total proteins from shoots of both WT and ST-lines were separated by two-dimensional gel electrophoresis. In 2-DE, 201, 226, 217 and 213 protein spots were detected in the untreated-or treated-WT and untreated- or treated-ST-87, respectively. Of theses, 17 and 10 protein spots were up- and down-regulated under salt stress in the WT, respectively. While, 16 and 8 protein spots were up- and down-regulated under salt stress in the ST-87, respectively, compared with the untreated plants. High intensity or de novo synthesized proteins were analyzed by MALDI-TOF/MS analysis.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

Modeling Technology on Free-form Surface of a New Military Personal Head using Quick Surface Method (퀵서피스기법을 이용한 신장병 두상의 자유곡면 모델링 기술)

  • Lee, Yong-Moon;Hwang, Tae-Son;Kim, Hun;Nam, Hee-Tae;Lee, Kee-Hwan;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.170-176
    • /
    • 2018
  • Recently, weapon system requires personal protection products due to the explosion of rapid-fire explosion, which is considered to be multi threat in modernization, complication and war against terrorism. However, the conventional Korean military bullet protection helmets are not suitable for wearing convenience and combatant interoperability in terms of ergonomic. In this paper, we propose a suitable 3D Scanning method for the head, and compare the measured 3D dimension with the existing 2D measurement value to identity the reliability. Reverse engineered soldier head using the quick surface method was realized with a perfect free-form surface and satisfactory tolerance range (${\pm}0.2mm$). Through the comparison of 3D and 2D measured head dimensions, the absolute error value was 0.73 mm on average and relative error was 0.35 %, confirming the high accuracy of the 3D scan modeling. Also, quick surface method using 3D scanner is suggested a fast and accurate skill for ergonomics in obtaining the head modeling needed for military's personal bullet protection helmet design.

Reverse Engineering Procedure of Metal Brake Pad for Part 25 Aircraft (수송류 항공기용 금속계 제동패드의 역설계 절차)

  • Min-ji Kim;Kyung-il Kim;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.621-628
    • /
    • 2023
  • This study derived a reverse engineering procedure for verifying the design identity of original parts and developed parts for PMA(Parts Manufacturer Approval) and STC(Supplemental Type Certificate) of metal brake pads for transport aircraft, which are critical parts among aircraft parts and equipment. In Korea, the regulations for reverse engineering procedures are regulated by the Parts Manufacturer Approval Guidelines, and in the United States, AC No. 21. 303-4. In the reverse engineering for the brake pad, the detailed procedures for each component were determined by selecting verification test items to confirm identity based on sample quantity, dimensional tolerance, mechanical property measurement, material, weight and volume characteristics for each component. In addition, as a result of analyzing the regulation of Korea and United States, in the case of Korea, it is necessary to establish technical standards for braking systems for transport aircraft and regulations related to flight tests.

Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum (핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계)

  • M. G. Kim;J. H. Lee;D. C. Ko
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

Impact Performance of 3D Orthogonal Composites by Automated Tape Placement Process (자동적층 공정에 의한 3차원 직교 섬유배열구조 복합재의 충격특성)

  • Song S-W;Lee C-H;Um M-K;Hwang B-S;Byun J-H
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • In order to characterize the outstanding performance of three-dimensional (3D) composites, the low velocity impact test has been carried out. 3D fiber structures have been achieved by using the automated tape placement (ATP) process and a stitching method. Materials for the ATP and the stitching process were carbon/epoxy prepreg tapes and Kevlar fibers, respectively. Two-dimensional composites with the same stacking sequence as 3D counterparts have also been fabricated for the comparison of damage tolerance. For the assessment of damage after the impact loading, specimens were subjected to C-Scan nondestructive inspection. Compression after impact (CAI) tests were conducted to evaluate residual compressive strength. The damage area of 3D composites was greatly reduced $(30-40\%)$ compared with that of 2D composites. Although the CAI strength did not show drastic improvement for 3D composites, the ratio of retained strength was $5-10\%$ higher than 2D samples. The effect of stitching on the impact performance was negligible above the energy level of 35 Joules.

Initial Experience of Patient-Specific QA for Wobbling and Line-Scanning Proton Therapy at Samsung Medical Center

  • Jo, Kwanghyun;Ahn, Sung Hwan;Chung, Kwangzoo;Cho, Sungkoo;Shin, Eun Hyuk;Park, Seyjoon;Hong, Chae-Seon;Kim, Dae-Hyun;Lee, Boram;Lee, Woojin;Choi, Doo Ho;Lim, Do Hoon;Pyo, Hong Ryull;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Purpose: To report the initial experience of patient-specific quality assurance (pQA) for the wobbling and line-scanning proton therapy at Samsung Medical Center. Materials and Methods: The pQA results of 89 wobbling treatments with 227 fields and 44 line-scanning treatments with 118 fields were analyzed from December 2015 to June 2016. For the wobbling method, proton range and spread-out Bragg peak (SOBP) width were verified. For the line-scanning method, output and two-dimensional dose distribution at multiple depths were verified by gamma analysis with 3%/3 mm criterion. Results: The average range difference was -0.44 mm with a standard deviation (SD) of 1.64 mm and 0.1 mm with an SD of 0.53 mm for the small and middle wobbling radii, respectively. For the line-scanning method, the output difference was within ${\pm}3%$. The gamma passing rates were over 95% with 3%/3 mm criterion for all depths. Conclusions: For the wobbling method, proton range and SOBP width were within the tolerance levels. For the line-scanning method, the output and two-dimensional dose distribution showed excellent agreement with the treatment plans.

The Study of Genetic Diversity for Drought Tolerance in Maize (옥수수 한발 내성에 관한 유전적 다양성 조사)

  • Kim, Hyo Chul;Lee, Yong Ho;Kim, Kyung-Hee;Shin, Seungho;Song, Kitae;Moon, Jun-Cheol;Lee, Byung-Moo;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.223-232
    • /
    • 2016
  • Drought is one of important environmental stress for plant. Drought has deleterious effect to plant growth including maize (Zea mays L.) such as vegetative and/or reproductive growth, root extension, photosynthesis efficiency, flowering, anthesis-silking interval (ASI), fertilization, and grain filling. In this study, we screened drought tolerant maize in 21 cultivars from different sources, sixteen NAM parent lines (B73, CML103, CML228, CML247, CML277, CML322, CML333, CML69, Ki11, Ki3, Ky21, M37W, Mo18w, NC350, Oh43 and Tx303), four Korean hybrids (Cheongdaok, Gangdaok, Kwangpyeongok and Pyeonganok) and one Southeast Asian genotype (DK9955). Drought stress (DS) index was evaluated with leaf rolling score at seedling stage and ASI at silking date. The leaf rolling scoring of CML228, DK9955 and Ki11 were determined 1.28, 1.85, 1.86, respectively. However, M37W, Kwangpyeongok, B73 and NC350 were determined over the 3. ASI analysis revealed that CML228, CML103, Cheongdaok, NC350, B73, CML322, Kwangpyeongok and Ki11 are represented less than 5 days under DS and less than 3 days of difference between DS and well-watered (WW), but CML69, Ki3, Pyeonganok, M37W, Mo18w and Gangdaok were represented more than 10 days under DS and more than 8 days of difference between DS and WW. Multi-Dimensional Scaling (MDS) analysis determined CML228, Ki11, and CML322 were regarded as drought tolerance cultivars. Eventually, Ki11 showed genetic similarity with Korean cultivars by QTL analysis and MDS analysis. Ki11 has a potential for development of drought tolerance maize with Korean cultivars.

The variability of 6-D Skull Tracking(6DST) in Cyberknife for Bone metastasis patients (사이버나이프 6-D Skull Tracking의 유용성 평가)

  • Lee, Geon Ho;Bae, Sun Myeong;Song, Heung Kwon;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.41-47
    • /
    • 2018
  • Purpose : The purpose of this study is to evaluate the usefulness of 6 Dimensional Skull Tracking(6DST) in Cyberknife Stereotactic Body Radiation Therapy(SBRT) for the first and second cervical vertebrae(C1 and C2) metastasis. Methode and material : The Computed Tomography (Lightspeed VCT 64, General Electric Co. Waukesha, WI, USA) was used to acquire the CT images of the 9 patients with cervical vertebrae(C1 and C2) metastasis. Treatment plans for Xsight spine tracking and 6 Dimensional skull tracking were established with planning system (Multiplan system Version 4.6, Accuray, US). The results of XST and 6DST for each patient were analyzed with Microsoft Excel 2010. Result : The Maximum offsets of XST for C1 were 0.9 mm in Y(supero-inferior), 0.9 mm in Z(antero-posterior), 0.7 mm in X(left-right) direction, and rotations were and 1.0 degrees roll, 1.0 degrees pitch and 1.2 degrees yaw. The Maximum offsets of 6DST for C1 were 0.7 mm, 0.7 mm, 0.9 mm and $1.0^{\circ}$, $1.0^{\circ}$, $1.2^{\circ}$ for Y, Z, X and Roll, Pitch, Yaw. The Maximum offsets of XST and 6DST for C2 were 0.7 mm, 0.7 mm, 0.8 mm and $0.9^{\circ}$, $1.0^{\circ}$, $1.8^{\circ}$, and 0.9 mm, 0.7 mm, 0.9 mm and $0.9^{\circ}$, $0.9^{\circ}$, $1.0^{\circ}$ for Y, Z, X and Roll, Pitch, Yaw, respectively. Conclusion : XST and 6DST showed identical results for translations and rotations within the tolerance. It is possible to simplify the treatment time and procedure by using the 6DST. Therefore, 6DST is very useful methode with XST among the various tracking methods in Cyberknife for the patients with C1, C2 vertebral metastasis.

  • PDF