DOI QR코드

DOI QR Code

The Study of Genetic Diversity for Drought Tolerance in Maize

옥수수 한발 내성에 관한 유전적 다양성 조사

  • Kim, Hyo Chul (Department of Life Science, Dongguk University-Seoul) ;
  • Lee, Yong Ho (O-Jeong Eco-Resilience Institute, Korea University) ;
  • Kim, Kyung-Hee (Department of Life Science, Dongguk University-Seoul) ;
  • Shin, Seungho (Department of Life Science, Dongguk University-Seoul) ;
  • Song, Kitae (Department of Life Science, Dongguk University-Seoul) ;
  • Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon National University) ;
  • Lee, Byung-Moo (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Jae Yoon (College of Life Science and Biotechnology, Korea University)
  • 김효철 (동국대학교 생명과학과) ;
  • 이용호 (고려대학교 오정에코리질리언스연구소) ;
  • 김경희 (동국대학교 생명과학과) ;
  • 신승호 (동국대학교 생명과학과) ;
  • 송기태 (동국대학교 생명과학과) ;
  • 문준철 (강원대학교 농업생명과학연구원) ;
  • 이병무 (동국대학교 생명과학과) ;
  • 김재윤 (고려대학교 생명과학대학 생명공학부)
  • Received : 2016.10.04
  • Accepted : 2016.10.10
  • Published : 2016.12.31

Abstract

Drought is one of important environmental stress for plant. Drought has deleterious effect to plant growth including maize (Zea mays L.) such as vegetative and/or reproductive growth, root extension, photosynthesis efficiency, flowering, anthesis-silking interval (ASI), fertilization, and grain filling. In this study, we screened drought tolerant maize in 21 cultivars from different sources, sixteen NAM parent lines (B73, CML103, CML228, CML247, CML277, CML322, CML333, CML69, Ki11, Ki3, Ky21, M37W, Mo18w, NC350, Oh43 and Tx303), four Korean hybrids (Cheongdaok, Gangdaok, Kwangpyeongok and Pyeonganok) and one Southeast Asian genotype (DK9955). Drought stress (DS) index was evaluated with leaf rolling score at seedling stage and ASI at silking date. The leaf rolling scoring of CML228, DK9955 and Ki11 were determined 1.28, 1.85, 1.86, respectively. However, M37W, Kwangpyeongok, B73 and NC350 were determined over the 3. ASI analysis revealed that CML228, CML103, Cheongdaok, NC350, B73, CML322, Kwangpyeongok and Ki11 are represented less than 5 days under DS and less than 3 days of difference between DS and well-watered (WW), but CML69, Ki3, Pyeonganok, M37W, Mo18w and Gangdaok were represented more than 10 days under DS and more than 8 days of difference between DS and WW. Multi-Dimensional Scaling (MDS) analysis determined CML228, Ki11, and CML322 were regarded as drought tolerance cultivars. Eventually, Ki11 showed genetic similarity with Korean cultivars by QTL analysis and MDS analysis. Ki11 has a potential for development of drought tolerance maize with Korean cultivars.

본 연구에서는 21개 국내외 옥수수 수집종에 대한 유묘기와 성숙기의 대표적 환경 스트레스인 한발 스트레스에 대해 반응하는 형태적, 유전적 근연관계를 분석하였다. 유묘기 잎말림은 5단계로 나누어 평가하였으며, ASI는 수염이 출사하기 시작한 날과 화분이 비산하기 시작한 날의 차이로 산정하였다. 유묘기 잎말림의 경우 4 이상의 수준을 보이면 회복이 불가하며 2, 3 정도의 수준은 정상적인 잎으로 회복이 가능하다. 따라서 유묘기 잎말림이 2 미만의 수준을 보인다면 한발 내성 품종으로 평가할 수 있다. 또한, ASI는 한발 스트레스를 처리할 경우 3~7일 증가한다고 보고 되었으며 ASI가 3일에서 11일로 증가할 경우 수확량이 71% 감소한다고 보고 되어있다. 따라서 한발 스트레스를 처리했을때 ASI가 5일 이하이고, 대조구에 비해 실험구의 ASI가 3일 이하로 증가했다면 한발 내성 품종으로 평가할 수 있다. 한발조건에서의 유묘기 잎말림과 ASI 간의 상관분석 결과 피어슨 상관계수값은 -0.006으로 서로 연관이 없는 독립적인 특성인 것으로 나타났다. 21품종 중 한발 내성 품종 선발결과 CML228, Ki11 및 CML322가 높은 한발 내성을 지니고 있는 것으로 평가되었다. CML228과 CML322는 국내 품종과의 산포도가 높으나 Ki11은 매우 가까운 관계를 보여주고 있기 때문에 한발에 대한 내성 품종인 Ki11의 유전적 특징을 국내 품종에 활용하는 것이 가능할 것으로 사료된다.

Keywords

References

  1. Ajmone-Marsan P, P Castiglioni, F Fusari, M Kuiper and M Motto. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96:219-227. https://doi.org/10.1007/s001220050730
  2. Andersen MN, F Asch, Y Wu, CR Jensen, H Naested, VO Mogensen and KE Koch. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion sensitive phase of young ovary development in maize. Plant Physiol. 130:591-604. https://doi.org/10.1104/pp.005637
  3. Banzinger M, GO Edmeades, DL Beck and M Bellon. 2000. Breeding for drought and N stress tolerance in maize: from theory to practice. CIMMYT, Mexico, D. F.
  4. Barata C and MJ Carena. 2006. Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339-349. https://doi.org/10.1007/s10681-006-9155-y
  5. Barrett BA and KK Kidwell. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci. 38:1261-1271. https://doi.org/10.2135/cropsci1998.0011183X003800050025x
  6. Bernardo R. 1996. Testcross selection prior to further inbreeding in maize: mean performance and realized genetic variance. Crop Sci. 36:867-871. https://doi.org/10.2135/cropsci1996.0011183X003600040008x
  7. Betran FJ, D Beck, M Banziger and GO Edmeades. 2003. Genetic analysis of inbred and hybrid yield under stress and nonstress environments in tropical maize. Crop Sci. 43:807-817. https://doi.org/10.2135/cropsci2003.8070
  8. Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology 26:297-302. https://doi.org/10.2307/1932409
  9. Dubreuil P, P Dufour, E Krejci, M Causse, D de Vienne, A Gallais and A Charcosset. 1996. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci. 36:790-799. https://doi.org/10.2135/cropsci1996.0011183X003600030043x
  10. Eghball B and JW Maranville. 1993. Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses. Agron. J. 85:147-152. https://doi.org/10.2134/agronj1993.00021962008500010027x
  11. Godshalk EB, M Lee and KR Lamkey. 1990. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize. Theor. Appl. Genet. 80:273-280.
  12. Gonzalo M, TJ Vyn, JB Holland and LM McIntyre. 2006. Mapping density response in maize: A direct approach for testing genotype and treatment interactions. Gent. 173:331-348.
  13. Goodman MM and RM Bird. 1977. The races of maize IV: tentative grouping of 219 Latin American races. Econ. Bot. 31:204-221. https://doi.org/10.1007/BF02866591
  14. Hall AJ, JH Lemcoff and N Trapani. 1981. Water stress before and during flowering in maize and its effects on yield, its components, and their determinants. Maydica 26:19-38.
  15. Heckenberger M, AE Melchinger, JS Ziegle, LK Joe, JD Hauser, M Hutton and M Bohn. 2002. Variation of DNA fingerprints among accessions within maize inbred lines with regard to the identification of essentially derived varieties. I. Genetic and technical sources of variation in SSR data. Mol. Breed. 10:181-191. https://doi.org/10.1023/A:1020539330957
  16. Kim JY, JC Moon, SB Baek, YU Kwon and BM Lee. 2014. Genetic improvement of maize by marker-assisted breeding. Korean J. Crop Sci. 59:109-127. https://doi.org/10.7740/kjcs.2014.59.2.109
  17. Lee EA and WF Tracy. 2009. Modern maize breeding. pp. 141-160. In Handbook of Maize (Bennetzen JL and SC Hake eds.). Springer.
  18. Lee M, EB Godshalk, KR Lamkey and WL Woodman. 1989. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci. 29:1067-1071. https://doi.org/10.2135/cropsci1989.0011183X002900040050x
  19. Livini C, PA Marsan, AE Melchinger, MM Messmer and M Motto. 1992. Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor. Appl. Genet. 84:17-25.
  20. Lu Y, J Yan, GT Guimaraes, S Taba, Z Hao, S Gao, S Chen, J Li, S Zhang, BS Vivek, C Magorokosho, S Mugo, D Makumbi, SN Parentoni, T Shah, T Rong, JH Crouch and Y Xu. 2009. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120:93-115. https://doi.org/10.1007/s00122-009-1162-7
  21. Makumbi D, JF Betran, M Banzinger and JM Ribaut. 2011. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180:143-162. https://doi.org/10.1007/s10681-010-0334-5
  22. Meeks M, SC Murray, S Hague and D Hays. 2013. Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 3:135-147. https://doi.org/10.3390/agronomy3010135
  23. Melchinger AE and PK Gumber. 1998. Overview of heterosis and heterotic groups in agronomic crops. pp. 29-44. In Concepts and breeding of heterosis in crop plants (Lamkey KR and JE Staub eds.). CSSA, Madison.
  24. Melchinger AR, J Boppenmaier, BS Dhillon, WG Pollmer and RG Herrmann. 1992. Genetic diversity for RFLPs in European maize inbreds : II. Relation to performance of hybrids within versus between heterotic groups for forage traits. Theor. Appl. Genet. 84:672-681.
  25. Min H, C Chen, S Wei, X Shang, M Sun, R Xia, X Liu, D Hao, H Chen and Q Xie. 2016. Identification of drought tolerant mechanisms in maize Seedlings based on trascriptome analysis of recombination inbred lines. Front. Plant Sci. 7:1080.
  26. Moll RH, JH Lonnquist, JV Fortuna and EC Johnson. 1965. The relation of heterosis and genetic divergence in maize. Genetics 52:139-144.
  27. Nassiry MR, A Javanmard and R Tohidi. 2009. Application of statistical procedures for analysis of genetic diversity in domestic animal populations. Am. J. Anim. Vet. Sci. 4:136. https://doi.org/10.3844/ajavsp.2009.136.141
  28. Pandey RK, JW Maranville and A Admou. 2000a. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components. Agric. Water Manage. 46:1-13. https://doi.org/10.1016/S0378-3774(00)00073-1
  29. Pandey RK, JW Maranville and MM Chetima. 2000b. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction. Agric. Water Manage. 46:15-7. https://doi.org/10.1016/S0378-3774(00)00074-3
  30. Park JS, KJ Sa, KJ Park, JS Jang and JK Lee. 2009. Genetic variation of parental inbred lines for Korean waxy corn hybrid varieties revealed by SSR markers. Korean J. Breed Sci. 41:106-114.
  31. Paterniani E and JH Lonnquist. 1963. Heterosis in interracial crosses of maize (Zea mays L.). Crop Sci. 3:504-507. https://doi.org/10.2135/cropsci1963.0011183X000300060014x
  32. Pinto LR, MLC Vieira, CL de Souza and AP de Souza. 2003. Genetic diversity assessed by microsatellites in tropical maize population submitted to highdensity reciprocal recurrent selection. Euphytica 134:277-286. https://doi.org/10.1023/B:EUPH.0000004946.15260.4a
  33. Reif JC, AE Melchinger, XC Xia, ML Warburton, DA Hoisington, SK Vasal, D Beck, M Bohn and M Frisch. 2003. Use of SSRs for establishing heterotic groups in subtropical maize. Theor. Appl. Genet. 107:947-957. https://doi.org/10.1007/s00122-003-1333-x
  34. Riede CR and JA Anderson. 1996. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci. 36:905-909. https://doi.org/10.2135/cropsci1996.0011183X0036000400015x
  35. Saker MM, SS Youssef, NA Abdallah, HS Bashandy and AM El Sharkawy. 2005. Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP. Afr. J. Biotechnol. 4:882-890.
  36. Sari-Gorla M, P Krajewski, ND Fonzo, M Villa and C Frova. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99:289-295. https://doi.org/10.1007/s001220051234
  37. Semagn K, C Magorokosho, SV Bindiganavile, D Makumbi, Y Beyene, S Mugo, BM Prasanna and ML Warburton. 2012. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genomics 13:113. https://doi.org/10.1186/1471-2164-13-113
  38. Senior ML, JP Murphy, MM Goodman and CW Stuber. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using agarose gel system. Crop Sci. 38:1088-1098. https://doi.org/10.2135/cropsci1998.0011183X003800040034x
  39. Smith CW, J Betran and ECA Runge. 2004. Corn: origin, history, technology, and production. Wiley series in crop science. pp. 358-360.
  40. Smith JSC. 1984. Genetic variability within US hybrid maize: multi-variate analysis of isozyme data. Crop Sci. 24:1041-1046. https://doi.org/10.2135/cropsci1984.0011183X002400060009x
  41. Smith JSC and OS Smith. 1992. Fingerprinting crop varieties. Adv. Agron. 47:85-140.
  42. Smith JSC, ECL Chin, H Shu, OS Smith, SJ Wall, ML Senior, SE Mitchell, S Kresovich and J Ziegle. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95:163-173. https://doi.org/10.1007/s001220050544
  43. Smith OS, JSC Smith, SL Bowen, RA Tenborg and SJ Wall. 1990. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor. Appl. Genet. 80:833-840.
  44. Sneath PHA and RR Sokal. 1973. Numerical taxonomy: The principles and practice of numerical classification.
  45. Song KT, KH Kim, HC Kim, JC Moon, JY Kim, SB Baek, YU Kwon and BM Lee. 2015. Evaluation of drought tolerance in maize seedling using leaf rolling. Korean J. Crop Sci. 60:8-16.
  46. Souza SGH, V Carpentieri-Pipolo, CF Ruas, VP Carvalho, PM Ruas and AC Gerage. 2008. Comparative analysis of genetic diversity among the maize inbred lines (Zea mays L.) obtained by RAPD and SSR markers. Braz. Arch. Biol. Technol. 51:183-192. https://doi.org/10.1590/S1516-89132008000100022
  47. Thompson JA and RL Nelson. 1998. Utilization of diverse germplasm for soybean yield improvement. Crop Sci. 38:1362-1368. https://doi.org/10.2135/cropsci1998.0011183X003800050035x
  48. Troyer AF. 1999. Background of U.S. hybrid corn. Crop Sci. 39:601-626. https://doi.org/10.2135/cropsci1999.0011183X003900020001x
  49. Udomprasert N, J Kijjanon, K Chusri-iam and A Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and yield of corn. Kasetsart J. Nat. Sci. 39:546-551.
  50. Van Inghelandt D, AE Melchinger, C Lebreton and B Stich. 2010. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor. Appl. Genet. 120:1289-1299. https://doi.org/10.1007/s00122-009-1256-2
  51. Varshney RK, JM Ribaut, ES Buckler, R Tuberosa, A Rafalski and P Langridgem. 2012. Can genomics boost productivity of orphan crops. Nat. Biotechnol. 30:1172-1176. https://doi.org/10.1038/nbt.2440
  52. Warburton ML, JC Reif, M Frisch, M Bohn, C Bedoya, XC Xia, J Crossa, J Franco, D Hoisington, K Pixley, S Taba and AE Melchinger. 2008. Genetic diversity in CIMMYT non-temperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci. 48:617-624. https://doi.org/10.2135/cropsci2007.02.0103
  53. Warburton ML, X Xianchun, J Crossa, P Dubreuil and FJ Betran. 2002. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci. 42:1832-1840. https://doi.org/10.2135/cropsci2002.1832