• 제목/요약/키워드: Dimensional Gel Electrophoresis

검색결과 269건 처리시간 0.021초

Differential Proteomic Analysis of Secreted Proteins from Cutinase-producing Bacillus sp. SB-007

  • Ban, Yeon-Hee;Jeon, Mi-Ri;Yoon, Ji-Hee;Park, Jae-Min;Um, Hyun-Ju;Kim, Dae-Soon;Jung, Seung-Ki;Kim, Keun-Young;Lee, Jee-Won;Min, Ji-Ho;Kim, Yang-Hoon
    • The Plant Pathology Journal
    • /
    • 제24권2호
    • /
    • pp.191-201
    • /
    • 2008
  • Bacillus sp. SB-007 was isolated from pea leaves harvested from the southwestern parts of South Korea through screening on a minimal medium containing 0.2% purified cutin for its ability to induce the cutinase production. However, no cutinase was produced when it was grown in a minimal medium containing 0.2% glucose. A proteomic approach was applied to separate and characterize these differentially secreted proteins. The expression level of 83 extracellular proteins of the cutinase-producing Bacillus sp. strain SB-007 incubated in a cutinase-induced medium increased significantly as compared with that cultured in a non cutinase-induced medium containing glucose. The extracellular proteome of Bacillus sp. SB-007 includes proteins from different functional classes, such as enzymes for the degradation of various macromolecules, proteins involved in energy metabolism, sporulation, transport/binding proteins and lipoproteins, stress inducible proteins, several cellular molecule biosynthetic pathways and catabolism, and some proteins with an as yet unknown function. In addition, the two protein spots showed little similarities with the known lipolytic enzymes in the database. These secreted proteome analysis results are expected to be useful in improving the Bacillus strains for the production of industrial cutinases.

Biochemical and Genetic Variation of Hordein Subunits in Korean Barley

  • Lee, Sung-Shin;Kim, Jin-Baek;Kim, Dong-Sub;Nam, Jung-Hyun;Kim, Jae-Chul;Kim, Chung-Kon;Hong, Byung-Hee;Seo, Yong-Weon
    • 한국작물학회지
    • /
    • 제46권2호
    • /
    • pp.100-105
    • /
    • 2001
  • One-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D SDS-PAGE) was used to determine whether it would provide improved resolving power of hordein proteins concomitant with improved identification of Korean barley cultivars and germplams. This system gave rapid and reproducible separations of hordein polypeptides. Total fourteen of clear and easily scorable subunits were identified in Korean barley cultivars and germplasms and their polymorphic constitutions could provide biochemical genetic information in progeny analysis and endosperm quality improvement in barley breeding programs. Each hordein polypeptides residing in B, C, and D hordein pattern designations were scored to prepare a cultivar catalogue of protein patterns. On the basis of this character, 7 hordein polypeptide patterns were constructed from 108 barley cultivars and experimental lines. The molecular weight of hordein subunits in Korean barley cultivars and experimental lines varied in the range of 98 to 48 kDa. In contrast, less polymorphic hordein polypeptides were found in the low protein barley lines including malting barleys than those found in Korean barley cultivars and experimental lines.

  • PDF

Expression of Flagellin Proteins of Campylobacter jejuni within Microaerobic and Aerobic Exposures

  • LEE , YOUNG-DUCK;CHOI, JUNG-PIL;MOK, CHUL-KYOON;JI, GEUN-EOK;KIM, HAE-YEONG;NOH, BONG-SOO;PARK, JONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1227-1231
    • /
    • 2004
  • Campylobacter, one of the emerging foodborne pathogens, is highly adaptable to the external environments by changing its morphology. In the present study, a question of whether the whole-cell antibody would still be effective for its detection even though the morphology of C. jejuni was changed was examined. When microaerophilic C. jejuni was exposed to aerobic conditions for 48 h, its morphological change was detected by confocal laser scanning microscope: Its morphology was confirmed as a spiral-bacilli form in microaerobic condition, however, as a coccoid form with a little spiral-bacilli form, when exposed to aerobic conditions. Also, the expressions of the whole-cell proteins of C. jejuni, and the suppression or induction of newly synthesized proteins in both aerobic and microaerobic conditions were analyzed by two dimensional gel electrophoresis. Additionally, immunoblotting assay with the whole cell antibody for the proteins expressed under the two conditions was performed. It was confirmed that the commercial whole-cell antibody of C. jejuni raised in rabbit was reactive. When analyzed with MALDI- TOF MS, the expressed proteins were confirmed as flagellins. Therefore, even though the morphology changed in aerobic condition, these flagellins were expressed and worked as the eitope proteins, thus making it possible to utilize for the development of an immunosensor for real-time detection of any kind of C. jejuni cell.

돼지 품종간 정액 내에서 수정 능력과 단백질 변화와의 관계 분석 (Relative Analysis between Fertility and Protein Changes in Semen of Different Species in Pigs)

  • 이연주;이상희;김유진;정희태;양부근;박춘근
    • Reproductive and Developmental Biology
    • /
    • 제38권1호
    • /
    • pp.53-62
    • /
    • 2014
  • The objective of this study was to investigate the relationship between fertility and protein pattern change using in vitro fertilization, analysis of sperm characteristics and two-dimensional gel electrophoresis in different pig types. In results, the viability and mitochondria integrity of sperm were higher significantly (p<0.05) but the portions of acrosome reaction was lower significantly (p<0.05) in Duroc and $F_1$ (potbellied ${\times}$ PWG miniature pig) than PWG miniature. On in vitro fertilization to investigate fertility, the fertility of $F_1$ semen war higher significantly (p<0.05) than in Duroc and PWG miniature pig. On the other hand, protein patterns showed similar function among the different boar semen. Especially, the heat shock 70 kDa 1-like and G patch domain-containing protein 4 were significantly (p<0.05) higher expressed in $F_1$ than in Duroc and PWG miniature pig. The proteins associated with mitochondria in Duroc were significantly (p<0.05) higher expressed than in $F_1$ and PWG miniature pig. The developmental rates to blastocyst stage of oocytes fertilized with sperm of $F_1$ pig were significantly (p<0.05) higher than in PWG miniature pig. However, phosphoglycerate kinase 2 and zinc finger protein 431 were significantly (p<0.05) higher expressed in PWG miniature pig than in $F_1$ and Duroc pigs. In conclusion, the results of the present study indicate that different proteins were expressed in different pig types, and were associated with a sperm functions and embryo development.

Proteome Analysis of Paenibacillus polymyxa E681 Affected by Barley

  • Seul, Keyung-Jo;Park, Seung-Hwan;Ryu, Choong-Min;Lee, Yong-Hyun;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.934-944
    • /
    • 2007
  • Paenibacillus polymyxa E681 is known to be able to suppress plant diseases by producing antimicrobial compounds and to promote plant growth by producing phytohormones, and secreting diverse degrading enzymes. In spite of these capabilities, little is known regarding the flow of information from the bacterial strain to the barley roots. In an attempt to determine the flow of information from the bacterial strain to barley roots, the strain was grown in the presence and absence of barley, and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry were used. 2D-PAGE detected approximately 1,000 spots in the cell and 1,100 spots in the supernatant at a pH 4-10 gradient. Interestingly, about 80 spots from each sample showed quantitative variations. Fifty-three spots from these were analyzed by MALDI-TOF mass spectrometry and 28 proteins were identified. Most of the cytosolic proteins expressed at higher levels were found in P. polymyxa E681 cells grown in the presence of barley rather than in the absence of barley. Proteins detected at a lower level in the surpernatant of P. polymyxa E68l cells grown in the presence of barley were lipoprotein, glucose-6-phosphate 1-dehydrogenase, heat-shock protein HtpG, spermidine synthase, OrfZ, ribonuclease PH, and coenzyme PQQ synthesis protein, and flagellar hook-associated protein 2 whereas proteins detected at a higher level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley included D-alanyl-D-alanine ligase A, isopentenyl-diphosphate delta-isomerase, ABC transporter ATP-binding protein Uup, lipase. Many of the proteins belonging to plant-induced stimulons are associated with biosynthetic metabolism and metabolites of proteins and transport. Some of these proteins would be expected to be induced by environmental changes resulting from the accumulation of plant-secreted substances.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Proteome Changes in Penicillium expansum Grown in a Medium Derived from Host Plant

  • Xia, Xiaoshuang;Li, Huan;Liu, Fei;Zhang, Ye;Zhang, Qi;Wang, Yun;Li, Peiwu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.624-632
    • /
    • 2017
  • Penicillium expansum causes blue mold rot, a prevalent postharvest disease of pome fruit, and is also the main producer of the patulin. However, knowledge on the molecular mechanisms involved in this pathogen-host interaction remains largely unknown. In this work, a two-dimensional gel electrophoresis-based proteomic approach was applied to probe changes in P. expansum 3.3703 cultivated in apple juice medium, which was used to mimic the in planta condition. The results showed that the pH value and reducing sugar content in the apple juice medium decreased whereas the patulin content increased with the growing of P. expansum. A total of 28 protein spots that were up-regulated in P. expansum when grown in apple juice medium were identified. Functional categorization revealed that the identified proteins were mainly related to carbohydrate metabolism, secondary metabolism, protein biosynthesis or degradation, and redox homeostasis. Remarkably, several induced proteins, including glucose dehydrogenase, galactose oxidase, and FAD-binding monooxygenase, which might be responsible for the observed medium acidification and patulin production, were also detected. Overall, the experimental results provide a comprehensive interpretation of the physiological and proteomic responses of P. expansum to the host plant environment, and future functional characterization of the identified proteins will deepen our understanding of fungi-host interactions.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone

  • Hwang, Won;Lee, Ko-Eun;Lee, Jeong-Kug;Park, Byoung-Chul;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.219-227
    • /
    • 2008
  • The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.

Functional Characterization and Proteomic Analysis of Porcine Deltacoronavirus Accessory Protein NS7

  • Choi, Subin;Lee, Changhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1817-1829
    • /
    • 2019
  • Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection.