Browse > Article

Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone  

Hwang, Won (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Ko-Eun (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Jeong-Kug (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Park, Byoung-Chul (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Kun-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 219-227 More about this Journal
Abstract
The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.
Keywords
Reporter vectors; Rhodobacter sphaeroides; quorum sensing;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Rees, D. C., H. Komiya, and T. O. Yeates. 1989. The bacterial photosynthetic reaction center as a model for membrane proteins. Annu. Rev. Biochem. 58: 607-633   DOI   ScienceOn
2 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
3 Shaw, D. P., G. Ping, S. L. Daly, C. Cha, J. E. Cronan Jr., K. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036-6041
4 Stein, M. A., A. Schafer, and F. Giffhoron. 1997. Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J. Bacteriol. 179: 6335-6340   DOI
5 Williams, J. C., L. A. Steiner, G. Feher, and M. I. Simon. 1984. Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA 81: 7303-7307
6 De Kievit, T. R. and B. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839-4849
7 Gonzalez, J. and N. D. Keshavan. 2006. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70: 859-875   DOI   ScienceOn
8 Henke, J. M. and B. L. Bassler. 2004. Bacterial social engagement. Trends Cell Biol. 14: 648-656   DOI   ScienceOn
9 Leimkuhler, S., S. Angermuller, G. Schwarz, R. R. Mendel, and W. Klipp. 1999. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. J. Bacteriol. 181: 5930-5939
10 Nealson, K. H., T. Platt, and J. W. Hastings. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104: 313-322
11 Puskas, A., E. P. Greenberg, S. Kaplan, and A. L. Schaeffer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179: 7530-7537   DOI
12 Jang, M., B. C. Park, D. H. Lee, C. W. Kho, S. Cho, B. R. Lee, and S. G. Park. 2006. Proteome analysis of Bacillus subtilis when overproducing secretory protein. J. Microbiol. Biotechnol. 16: 368-373   과학기술학회마을
13 Ouchane, S. and S. Kaplan. 1999. Topological analysis of the membrane-localized redox-responsive sensor kinase PrrB from Rhodobacter sphaeroides 2.4.1. J. Biol. Chem. 274: 17290-17296   DOI
14 Fuqua, C., S. C. Winans, and E. P. Greenberg. 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell densityresponsive transcriptional regulators. J. Bacteriol. 176: 269-275   DOI
15 Shah, D. S. H., S. L. Porter, A. C. Martin, P. A. Hamblin, and J. P. Armitage. 2000. Fine tuning bacterial chemotaxis: Analysis of Rhodobacter sphaeroides behavior under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY gene. EMBO J. 19: 4601-4613   DOI   ScienceOn
16 Elsen, S., L. R. Swem, D. L. Swem, and C. E. Bauer. 2004. RegB/RegA, a highly conserved redox-responding global twocomponent regulatory system. Microbiol. Mol. Biol. Rev. 68: 263-279   DOI   ScienceOn
17 Gavira, M., D. Roldan, F. Castillo, and C. Moreno-Vivian. 2002. Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J. Bacteriol. 184: 1693-1702   DOI   ScienceOn
18 Kim, J. H. and J. K. Lee. 1997. Cloning and expression of gene coding for poly-3-hydroxybutyric acid (PHB) synthase of Rhodobacter sphaeroides 2.4.1 in Escherichia coli. J. Microbiol. Biotechnol. 7: 229-236
19 Lee, J. K. and S. Kaplan. 1995. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence. J. Biol. Chem. 270: 20453-20458   DOI   ScienceOn
20 He, X. and C. Fuqua. 2006. Rhizosphere communication: Quorum sensing by the rhizobia. J. Microbiol. Biotechnol. 16: 1661-1677   과학기술학회마을
21 Poonguzhali, S., M. Madhaiyan, and T. Sa. 2007. Production of acyl-homoserine lactone quorum sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-233   과학기술학회마을
22 Simon, R., U. Priefer, and A. Puhler. 1993. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology 28: 37-45
23 Baek, C.-H. and K.-S. Kim. 2003. lacZ- and aph-based reporter vectors for in vivo expression technology. J. Microbiol. Biotechnol. 13: 872-880
24 Whitehead, N. A., A. M. L. Barnard, H. Slater, N. J. L. Simpson, and G. P. C. Salmond. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365-404   DOI   ScienceOn
25 Prentki, P. and H. M. Krisch. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303-313   DOI   ScienceOn
26 Sitnikov, D. M., J. B. Schineller, and T. O. Baldwin. 1995. Transcriptional regulations of bioluminescence genes from Vibrio fischeri. Mol. Microbiol. 17: 801-812   DOI   ScienceOn
27 Fuqua, C., M. R. Parsek, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439-468   DOI   ScienceOn
28 Kim, E.-J., M.-S. Kim, and J. K. Lee. 2007. Phosphatidylcholine is required for the efficient formation of photosynthetic membrane and B800-850 light-harvesting complex in Rhodobacter sphaeroides. J. Microbiol. Biotechnol. 17: 373-377   과학기술학회마을
29 Lee, K.-E., J.-S. Bang, C.-H. Baek, D.-K. Park, W. Hwang, S. H. Choi, and K.-S. Kim. 2007. IVET-based identification of virulence factors in Vibrio vulnificus MO6-24/O. J. Microbiol. Biotechnol. 17: 234-243   과학기술학회마을
30 Yuvaniyama, P., J. N. Agar, V. L. Cash, M. K. Johnson, and D. R. Dean. 2000. NifS-directed assembly of a transient [2Fe- 2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA 97: 599-604
31 Dunny, G. M. and S. C. Winans. 1999. Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, D.C
32 Lake, M. W., C. A. Temple, K. V. Rajagopalan, and H. Shindelin. 2000. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J. Biol. Chem. 275: 40211-40217   DOI   ScienceOn
33 Sistrom, W. R. 1962. The kinetic of the synthesis of photopigment in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28: 607-616   DOI   ScienceOn
34 Jeffke, T., N. H. Gropp, C. Kaiser, C. Grzesik, B. Kusian, and B. Bowein. 1999. Mutational analysis of the cbb operon $(CO_{2}assimilation)$ promoter of Ralstonia eutropha. J. Bacteriol. 181: 4374-4380
35 Zeilstra-Ryalls, J., M. Gomelsky, J. M. Eraso, A. Yeliseev, J. O'Gara, and S. Kaplan. 1998. Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol. 180: 2801-2809
36 Bauer, C. E., S. Elsen, L. R. Swem, D. L. Swem, and S. Masuda. 2003. Redox and light regulation of gene expression in photosynthetic prokaryotes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358: 147-154   DOI   ScienceOn