Browse > Article
http://dx.doi.org/10.4014/jmb.1908.08013

Functional Characterization and Proteomic Analysis of Porcine Deltacoronavirus Accessory Protein NS7  

Choi, Subin (Animal Virology Laboratory, School of Life Sciences, BK21 PLUS KNU Creative BioResearch Group, Kyungpook National University)
Lee, Changhee (Animal Virology Laboratory, School of Life Sciences, BK21 PLUS KNU Creative BioResearch Group, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.11, 2019 , pp. 1817-1829 More about this Journal
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection.
Keywords
PDCoV; accessory protein; NS7; mitochondrial localization; proteomics; ACTN4;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fang P, Fang L, Liu X, Hong Y, Wang Y, Dong N, et al. 2016. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6. Virology 499: 170-177.   DOI
2 Fang P, Fang L, Hong Y, Liu X, Dong N, Ma P, et al. 2017. Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. J. Gen. Virol. 98: 173-178.   DOI
3 McBride R, Fielding BC. 2012. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4: 2902-2923.   DOI
4 Berkova Z, Crawford SE, Blutt SE, Morris AP, Estes MK. 2007. Expression of rotavirus NSP4 alters the actin network organization through the actin remodeling protein cofilin. J. Virol. 81: 3545-3553.   DOI
5 Taylor M P, Koyuncu OO, Enquist LW. 2011. Subversion o f the actin cytoskeleton during viral infection. Nat. Rev. Microbiol. 9: 427-439.   DOI
6 Lv X, Li Z, Guan J, Hu S, Zhang J, Lan Y, et al. 2019. Porcine hemagglutinating encephalomyelitis virus activation of the integrin $\alpha$5$\beta$1-FAK-cofilin pathway causes cytoskeletal rearrangement to promote its invasion of N2a Cells. J. Virol. 93: e01736-18.
7 Stradal TEB, Schelhaas M. 2018. Actin dynamics in host-pathogen interaction. FEBS Lett. 592: 3658-3669.   DOI
8 Surjit M, Liu B, Jameel S, Chow VT, Lal SK. 2004. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem. J. 383: 13-18.   DOI
9 Lomert E, Turoverova L, Kriger D, Aksenov ND, Nikotina AD, Petukhov A, et al. 2018. Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle 17: 616-626.
10 Huang Q, Li X, Huang Z, Yu F, Wang X, Wang S, et al. 2019. ACTN4 promotes the proliferation, migration, metastasis of osteosarcoma and enhances its invasive ability through the NF-${\kappa}$B pathway. Pathol. Oncol. Res. doi: 10.1007/s12253-019-00637.
11 Zhao X, Hsu KS, Lim JH, Bruggeman LA, Kao HY. 2015. ${\alpha}$-Actinin 4 potentiates nuclear factor ${\kappa}$-light-chain-enhancer of activated B-cell (NF-${\kappa}$B) activity in podocytes independent of its cytoplasmic actin binding function. J. Biol. Chem. 290: 338-349.   DOI
12 Zhang R, Wang K, Ping X, Yu W, Qian Z, Xiong S, et al. 2015. The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis. J. Virol. 89: 11383-11395.   DOI
13 Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. 2014. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 109: 97-109.   DOI
14 de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ. 2002. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296: 177-189.   DOI
15 Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, et al. 2005. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79: 14909-14922.   DOI
16 Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL Jr, Graham RL, et al. 2017. MERS-CoV accessory ORFs play key role for infection and pathogenesis. MBio 8: e00665-17.
17 Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, et al. 2013. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J. Virol. 87: 2489-2495.   DOI
18 Zeng LP, Gao YT, Ge XY, Zhang Q, Peng C, Yang XL, et al. 2016. Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response. J. Virol. 90: 6573-6582.   DOI
19 Pellegrin S, Mellor H. 2007. Actin stress fibres. J. Cell Sci. 120: 3491-3499.   DOI
20 Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, et al. 2014. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J. Virol. 88: 4866-4876.   DOI
21 Creixell P, Schoof EM, Tan CS, Linding R. 2012. Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367: 2584-2593.   DOI
22 Lee S, Lee C. 2015. Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus. Virus. Res. 208: 136-145.   DOI
23 Jang G, Kim SH, Lee YJ, Kim S, Lee DS, Lee KK, et al. 2018. Isolation and characterization of a Korean porcine deltacoronavirus strain KNU16-07. J. Vet. Sci. 19: 586-590.   DOI
24 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
25 Lee YJ, Park CK, Nam E, Kim SH, Lee OS, Lee D, et al. 2010. Generation of a porcine alveolar macrophage cell line for the growth of porcine reproductive and respiratory syndrome virus. J. Virol. Methods 163: 410-415.   DOI
26 Nam E, Lee C. 2010. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet. Microbiol. 144: 41-50.   DOI
27 Lee YJ, Lee C. 2018. Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway. Virus Res. 253: 112-123.   DOI
28 Oeckinghaus A, Ghosh S, 2009. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1: a000034.   DOI
29 Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. 2012. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 22: 557-566.   DOI
30 Oh J, Lee C. 2012. Proteomic characterization of a novel structural protein ORF5a of porcine reproductive and respiratory syndrome virus. Virus Res. 169: 255-263.   DOI
31 Oakley BR, Kirsch DR, Morris NR. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363.   DOI
32 Shevchenko A, Wil M, Vorm O, Mann M. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858.   DOI
33 Zhang H, Guo X, Ge X, Chen Y, Sun Q, Yang H. 2009. Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J. Proteome. Res. 8: 3091-3097.   DOI
34 Fernandez J, Gharahdaghi F, Mische SM. 1998. Routine identification of proteins from sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19: 1036-1045.   DOI
35 Sagong M, Lee C. 2011. Porcine reproductive and respiratory syndrome virus nucleocapsid protein modulates interferon-${\beta}$ production by inhibiting IRF3 activation in immortalized porcine alveolar macrophages. Arch. Virol. 156: 2187-2195.   DOI
36 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   DOI
37 Ringrose JH, Jeeninga RE, Berkhout B, Speijer D. 2008. Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. J. Virol. 82: 4320-4330.   DOI
38 Alfonso P, Rivera J, Hernaez B, Alonso C, Escriban JM. 2004. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 4: 2037-2046.   DOI
39 Brasier AR, Spratt H, Wu Z, Boldogh I, Zhang Y, Garofalo RP, et al. 2004. Nuclear heat shock response and novel nuclear domain 10 reorganization in respiratory syncytial virus-infected A549 cells identified by high-resolution twodimensional gel electrophoresis. J. Virol. 78: 11461-11476.   DOI
40 Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A, Johnson MA, et al. 2008. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J. Virol. 82: 5279-5294.   DOI
41 Sagong M, Lee C. 2010. Differential cellular protein expression in continuous porcine alveolar macrophages regulated by the porcine reproductive and respiratory syndrome virus nucleocapsid protein. Virus Res. 151: 88-96.   DOI
42 Mignotte B, Vayssiere JL. 1998. Mitochondria and apoptosis. Eur. J. Biochem. 252: 1-15.   DOI
43 Zhang J, Li D, Zheng Y, Cui Y, Feng K, Zhou J, et al. 2008. Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma in China: a SELDI-TOF-MS study. Int. J. Clin. Exp. Pathol. 1: 352-361.
44 McBride R, van Zyl M, Fielding BC. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses 6: 2991-3018.   DOI
45 Martinez AI, Perez-Arellano I, Pekkala S, Barcelona B, Cervera J. 2010. Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency. Mol. Genet. Metab. 101: 311-323.   DOI
46 Winder SJ, Ayscough KR. 2005. Actin-binding proteins. J. Cell Sci. 118: 651-654.   DOI
47 An HT, Yoo S, Ko J. 2016. ${\alpha}$-actinin-4 induces the epithelialto-mesenchymal transition and tumorigenesis via regulation of snail expression and $\beta$-catenin stabilization in cervical cancer. Oncogene 35: 5893-5904.   DOI
48 Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T. 2013. MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32: 462-470.   DOI
49 Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. 2012. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86: 3995-4008.   DOI
50 Aksenova V, Turoverova L, Khotin M, Magnusson KE, Tulchinsky E, Melino G, et al. 2013. Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB. Oncotarget 4: 362-372.   DOI
51 Li G, Chen Q, Harmon KM, Yoon KJ, Schwartz KJ, Hoogland MJ, et al. 2014. Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734. Genome Announc. 2: e00278-14.
52 Marthaler D, Jiang Y, Collins J, Rossow K. 2014. Complete genome sequence of strain SDCV/USA/Illinois121/2014, a porcine deltacoronavirus from the United States. Genome Announc. 2: e00218-14.
53 Marthaler D, Raymond L, Jiang Y, Collins J, Rossow K, Rovira A. 2014. Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus. Emerg. Infect. Dis. 20: 1347-1350.   DOI
54 Wang L, Byrum B, Zhang Y. 2014. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014. Emerg. Infect. Dis. 20: 1227-1230.   DOI
55 Chen F, Zhu Y, Wu M, Ku X, Yao L, He Q. 2015. Full-length genome characterization of Chinese porcine deltacoronavirus strain CH/SXD1/2015. Genome Announc. 3: e01284-15.
56 Hu H, Jung K, Vlasova AN, Chepngeno J, Lu Z, Wang Q, et al. 2015. Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. J. Clin. Microbiol. 53: 1537-1548.   DOI
57 Sharma S, Mayank AK, Nailwal H, Tripathi S, Patel JR, Bowzard JB, et al. 2014. Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein $\alpha$-actinin-4 for viral replication. FEBS J. 281: 2899-2914.   DOI
58 Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, et al. 1998. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell Biol. 140: 1383-1393.   DOI
59 Khurana S, Chakraborty S, Cheng X, Su YT, Kao HY. 2011. The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J. Biol. Chem. 286: 1850-1859.   DOI
60 Kumeta M, Yoshimura SH, Harata M, Takeyasu K. 2010. Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J. Cell Sci. 123: 1020-1030.   DOI
61 Zhao X, Khurana S, Charkraborty S, Tian Y, Sedor JR, Bruggman LA, et al. 2016. ${\alpha}$-actinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and transrepression in podocytes. J. Biol. Chem. 292: 1637-1647.   DOI
62 Gross SR. 2013. Actin binding proteins: their ups and downs in metastatic life. Cell Adh. Migr. 7: 199-213.   DOI
63 Kemp JP Jr, Brieher WM. 2018. The actin filament bundling protein ${\alpha}$-actinin-4 actually suppresses actin stress fibers by permitting actin turnover. J. Biol. Chem. 293: 14520-14533.   DOI
64 Burridge K, Guilluy C. 2016. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343: 14-20.   DOI
65 Jang G, Lee KK, Kim SH, Lee C. 2017. Prevalence, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016. Transbound. Emerg. Dis. 64: 1364-1370.   DOI
66 Ma Y, Zhang Y, Liang X, Lou F, Oglesbee M, Krakowka S, et al. 2015. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. MBio 6: e00064.
67 Jung K, Hu H, Eyerly B, Lu Z, Chepngeno J, Saif LJ. 2015. Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs. Emerg. Infect. Dis. 21: 650-654.   DOI
68 Lee S. Lee C. 2014. Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/ 2014. Genome Announc. 2: e01191-14.
69 Dong N, Fang L, Zeng S, Sun Q, Chen H, Xiao S. 2015. Porcine deltacoronavirus in mainland China. Emerg. Infect. Dis. 21: 2254-2255.   DOI
70 Janetanakit T, Lumyai M, Bunpapong N, Boonyapisitsopa S, Chaiyawong S, Nonthabenjawan N, et al. 2016. Porcine deltacoronavirus, Thailand, 2015. Emerg. Infect. Dis. 2: 757-759.
71 de Groot RJ, Baker SC, Bari R, Enjuanes L, Gorbalenya AE, Holme KV, et al. 2011. Coronaviridae. pp. 806-828. In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds.), Virus Taxonomy: 9th Report of the International Committee on Taxonomy of Viruses, Elsevier, Oxford.
72 Lai MC, Perlman S, Anderson LJ, 2007. Coronaviridae. pp. 1305-1336. In Knipe DM, Howley PM, Griffin DE, Martin M A, L amb RA, Roizman B, a nd S traus SE ( eds.), Fields Virology, 5th Ed. Lippincott Williams & Wilkins, Philadelphia, Pennsylvania.