Browse > Article

Proteome Analysis of Paenibacillus polymyxa E681 Affected by Barley  

Seul, Keyung-Jo (Department of Microbiology, Kyungpook National University)
Park, Seung-Hwan (Genome Research Center, KRIBB)
Ryu, Choong-Min (Genome Research Center, KRIBB)
Lee, Yong-Hyun (Department of Genetic Engineering, Kyungpook National University)
Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.6, 2007 , pp. 934-944 More about this Journal
Abstract
Paenibacillus polymyxa E681 is known to be able to suppress plant diseases by producing antimicrobial compounds and to promote plant growth by producing phytohormones, and secreting diverse degrading enzymes. In spite of these capabilities, little is known regarding the flow of information from the bacterial strain to the barley roots. In an attempt to determine the flow of information from the bacterial strain to barley roots, the strain was grown in the presence and absence of barley, and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry were used. 2D-PAGE detected approximately 1,000 spots in the cell and 1,100 spots in the supernatant at a pH 4-10 gradient. Interestingly, about 80 spots from each sample showed quantitative variations. Fifty-three spots from these were analyzed by MALDI-TOF mass spectrometry and 28 proteins were identified. Most of the cytosolic proteins expressed at higher levels were found in P. polymyxa E681 cells grown in the presence of barley rather than in the absence of barley. Proteins detected at a lower level in the surpernatant of P. polymyxa E68l cells grown in the presence of barley were lipoprotein, glucose-6-phosphate 1-dehydrogenase, heat-shock protein HtpG, spermidine synthase, OrfZ, ribonuclease PH, and coenzyme PQQ synthesis protein, and flagellar hook-associated protein 2 whereas proteins detected at a higher level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley included D-alanyl-D-alanine ligase A, isopentenyl-diphosphate delta-isomerase, ABC transporter ATP-binding protein Uup, lipase. Many of the proteins belonging to plant-induced stimulons are associated with biosynthetic metabolism and metabolites of proteins and transport. Some of these proteins would be expected to be induced by environmental changes resulting from the accumulation of plant-secreted substances.
Keywords
Paenibacillus polymyxa E681; barley; bacteria-plant interaction; 2D PAGE; proteome;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Ash, C., F. G. Priest, and M. D. Collins, 1993. Molecular identification of rRNA group 3 bacilli using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leewenhoek 64: 253-260   DOI   ScienceOn
2 Briat, J.-F. 1992. Iron assimilation and storage in prokaryotes. J. Gen. Microbiol. 138: 2475-2483   DOI   ScienceOn
3 Buettner, K., J. Bernhardt, C. Scharf, R. Schmid, U. Maeder, C. Eymann, H. Antelmann, A. Voelker, U. Voelker, and M. Hecker. 2001. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22: 2908-2935   DOI   ScienceOn
4 Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
5 Klee, H. J., M. B. Hayford, K. A. Kretzmer, G. F. Barry, and G. M. Kishore. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3: 1187-1193   DOI   ScienceOn
6 Leong, J. 1986. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24: 187-209   DOI   ScienceOn
7 Oakley, B. R., D. R. Kirsch, and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363   DOI   ScienceOn
8 Pichard, B., J. P. Larue, and D. Thouvenot. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133: 215-218   DOI   ScienceOn
9 Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28: 897-906
10 Rosado, A. S. and L. Seldin. 1993. Production of a potentially novel antimicrobial substance by Bacillus polymyxa. World J. Microbiol. Biotechnol. 9: 521-528   DOI   ScienceOn
11 Ryu, C. M. and C. S. Park. 1997. Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681, pp. 209-211. In: Plant Growth-promoting Rhizobacteria: Present Status and Future Prospects. Proceedings of the 4th International Workshop on Plant Growth-promoting Rhizobacteria, Japan-OECD joint workshop, Sapporo
12 Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154   DOI   ScienceOn
13 Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852   DOI   ScienceOn
14 Park, S.-H., J. F. Kim, C. C. Kim, H. Jeong, S.-K. Choi, C.-G. Hur, T. K. Oh, Y. H. Moon, and C. S. Park. 2002. Genome sequencing and analysis of Paenibacillus polymyxa E681, a plant-probiotic bacterium. 9th International Symposium on the Genetics of Industrial Microorganisms. S18: 68
15 Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, A. Y. Borisov, I. A. Tikhonovich, C. Kluge, A. Preisfeld, K. J. Dietz, and V. V. Stepanok. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652   DOI   ScienceOn
16 Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339   DOI   ScienceOn
17 Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763   DOI   ScienceOn
18 Sattar, M. A. and A. C. Gaur. 1987. Production of auxins and gibberellins by phosphate-dissolving microorganisms. Zentralbl. Mikrobiol. 142: 393-395
19 James, E. K. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 65: 197-209   DOI   ScienceOn
20 Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growthpromoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
21 Kurusu, K. and K. Ohba. 1987. New peptide antibiotics LIF03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. 40: 1506-1514   DOI
22 Kloepper, J. W., R. M. Zablotowicz, E. M. Tipping, and R. Lifshitz. 1991. pp. 315-326. In K. L. Keister and P. B. Cregan (eds.). The Rhizosphere and Plant Growth. Kluwer. Academic Publishers, Dordecht, U.S.A
23 Gophna, U. and E. Z. Ron. 2002. Virulence and the heat shock response. Int. J. Med. Microbiol. 292: 1-9   DOI   ScienceOn
24 Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory, and E. P. Greenberg. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860-864   DOI   ScienceOn
25 Gouzou, L., G. Burtin, R. Philippy, F. Bartoli, and T. Heulin. 1993. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: Preliminary examination. Geoderma 56: 479-491   DOI   ScienceOn
26 Kajimura, Y. and M. Kaneda. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT- 8: Taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 49: 129-135   DOI   ScienceOn
27 Holl, F. B., C. P. Chanway, R. Turkington, and R. A. Radley. 1988. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Triifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem. 20: 19-24   DOI   ScienceOn
28 Boddey, R. M., L. G. da Silva, V. M. Reis, B. J. R. Alves, and S. Urquiaga. 1999. Assessment of bacterial nitrogen fixation in grass species, pp. 705-726. In E. W. Triplett (ed.), Nitrogen Fixation in Bacteria: Molecular and Cellular Biology. Horizon Scientific Press, U.K
29 Ryu, C. M., J. W. Kim, O. H. Choi, S. Y. Park, S. H. Park, and C. S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991   과학기술학회마을
30 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248- 254   DOI   ScienceOn
31 O'Farrell, P. H. 1975. High-resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007- 4021
32 Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858   DOI   ScienceOn
33 Glick, B. R., C. L. Patten, G. Holguin, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London
34 Neilands, J. B. and S. A. Leong. 1986. Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 37: 187-208   DOI   ScienceOn
35 Jang, M., B. C. Park, D. H. Lee, C. W. Kho, S. E. Cho, B. R. Lee, and S. G. Park. 2006. Proteome analysis of Bacillus subtilis when overproducing secretory protein. J. Microbiol. Biotechnol. 16: 368-373   과학기술학회마을
36 Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents, pp. 255-274. In F. B. Metting Jr. (ed.). Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., NY, U.S.A
37 Jeong, H. Y., J. H. F. Kim, Y. K. Park, S. B. Kim, C. H. Kim, and S. H. Park. 2006. Genome snapshot of Paenibacillus polymyxa ATCC $842^T$. J. Microbiol. Biotechnol. 16: 1650- 1655   과학기술학회마을