Browse > Article
http://dx.doi.org/10.5423/PPJ.2008.24.2.191

Differential Proteomic Analysis of Secreted Proteins from Cutinase-producing Bacillus sp. SB-007  

Ban, Yeon-Hee (School of Life Science, Chungbuk National University)
Jeon, Mi-Ri (College of Agriculture, Life & Environmental Sciences, Chungbuk National University)
Yoon, Ji-Hee (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University)
Park, Jae-Min (School of Life Science, Chungbuk National University)
Um, Hyun-Ju (School of Life Science, Chungbuk National University)
Kim, Dae-Soon (School of Life Science, Chungbuk National University)
Jung, Seung-Ki (Bioresource Inc.)
Kim, Keun-Young (Bioresource Inc.)
Lee, Jee-Won (Department of Chemical and Biological Engineering, Korea University)
Min, Ji-Ho (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University)
Kim, Yang-Hoon (School of Life Science, Chungbuk National University)
Publication Information
The Plant Pathology Journal / v.24, no.2, 2008 , pp. 191-201 More about this Journal
Abstract
Bacillus sp. SB-007 was isolated from pea leaves harvested from the southwestern parts of South Korea through screening on a minimal medium containing 0.2% purified cutin for its ability to induce the cutinase production. However, no cutinase was produced when it was grown in a minimal medium containing 0.2% glucose. A proteomic approach was applied to separate and characterize these differentially secreted proteins. The expression level of 83 extracellular proteins of the cutinase-producing Bacillus sp. strain SB-007 incubated in a cutinase-induced medium increased significantly as compared with that cultured in a non cutinase-induced medium containing glucose. The extracellular proteome of Bacillus sp. SB-007 includes proteins from different functional classes, such as enzymes for the degradation of various macromolecules, proteins involved in energy metabolism, sporulation, transport/binding proteins and lipoproteins, stress inducible proteins, several cellular molecule biosynthetic pathways and catabolism, and some proteins with an as yet unknown function. In addition, the two protein spots showed little similarities with the known lipolytic enzymes in the database. These secreted proteome analysis results are expected to be useful in improving the Bacillus strains for the production of industrial cutinases.
Keywords
Bacillus sp; cutinase activity; secreted proteome profiling; two-dimensional gel electrophoresis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Murphy, C. A., Cameron, J. A., Huang, S. J. and Vinopal, R. T. 1998. A second polycaprolactone depolymerase from Fusarium, a lipase distant from cutinase. Appl. Microbiol. Biotechnol. 50:692-696.   DOI   ScienceOn
2 Sinchaikul, S., Sookkheo, B., Topanuruk, S., Juan, H. F., Phutrakul, S. and Chen, S. T. 2002. Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771:261-287.   DOI   ScienceOn
3 Jongbloed, J. D., Antelmann, H., Hecker, M., Nijland, R., Bron, S., Airaksinen, U., Pries, F., Quax, W. J., van Dijl, J. M., Braun, P. G. 2002. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem. 277:44068-44078.   DOI   ScienceOn
4 Kim, D. H. 2003. Modulation of a fungal signaling by Hypovirus. Plant Pathol. J. 19:30-33.   DOI   ScienceOn
5 Kim, Y. H., Ahn, J. Y., Moon, S. H. and Lee, J. 2005. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60:1349-1355.   DOI   ScienceOn
6 Antelmann, H., Sapolsky, R., Miller, B., Ferrari, E., Chotani, G., Weyler, W., Gaertner, A. and Hecker, M. 2004. Quantitative proteome profiling during the fermentation process of pleiotropic Bacillus subtilis mutants. Proteomics 4:2408-2424.   DOI   ScienceOn
7 Antelmann, H., Darmon, E., Noone, D., Veening, J. W., Westers, H., Bron, S., Kuipers, O. P., Devine, K. M., Hecker, M. and van Dijl, J. M. 2003. The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol. Microbiol. 49:143-156.   DOI   ScienceOn
8 Chen, Z., Franco, C. F., Baptista, R. P., Cabral, J. M., Coelho, A. V., Rodrigues, C. J. Jr. and Melo, E. P. 2006. Purification and identification of cutinase from Colletotrichum kahawae and Colletotrichum gloeosporioides. Appl. Microbiol. Biotechnol. 73:1306-1313.   DOI   ScienceOn
9 Chu, P. W., Yap, M. N., Wu, C. Y., Huang, C. M., Pan, F. M., Tseng, M. J. and Chen, S. T. 2000. A proteomic analysis of secreted proteins from xylan-induced Bacillus sp. strain K-1. Electrophoresis 21:1740-1745.   DOI   ScienceOn
10 Coppee, J. Y., Auger, S., Turlin, E., Sekowska, A., Le Caer, J. P., Labas, V., Vagner, V., Danchin, A. and Martin-Verstraete, I. 2001. Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology 147:1631-1640.   DOI
11 Dartois, V., Baulard, A., Schanck, K. and Colson, C. 1992. Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim. Biophys. Acta. 1131:253-260.   DOI   ScienceOn
12 Eggert, T., Pencreac'h, G., Douchet, I., Verger, R. and Jaeger, K. E. 2000. A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur. J. Biochem. 267:6459-6469.   DOI   ScienceOn
13 Egmond, M. R. and de Vlieg, J. 2000. Fusarium solani pisi cutinase. Biochimie 82:1015-1021.   DOI   ScienceOn
14 Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C. M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T. and Fujita, Y. 2001. Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29:683-692.   DOI   ScienceOn
15 Buttner, K., Bernhardt, J., Scharf, C., Schmid, R., Mader, U., Eymann, C., Antelmann, H., Volker, A., Volker, U. and Hecker, M. 2001. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22:2908-2935.   DOI   ScienceOn
16 Chander, H. and Ranganathan, G. 1975. Role of amino acids on the growth and lipase production of Streptococcus faecalis. Experientia 31:1263.
17 Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., van Diji, J. M. and Hecker, M. 2001. A proteomic view on genome-based signal peptide predictions. Genome Res. 11:1484-1502.   DOI   ScienceOn
18 Voigt, B., Schweder, T., Sibbald, M. J., Albrecht, D., Ehrenreich, A., Bernhardt, J., Feesche, J., Maurer, K. H., Gottschalk, G., van Dijl, J. M. and Hecker, M. 2006. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268-281.   DOI   ScienceOn
19 van Dijl, J. M., Bolhuis, A., Tjalsma, H., Jongbloed, J. D. H., de Jong, A. and Bron, S. 2001. Protein transport pathways in Bacillus subtilis: a genome-based road map. In: Bacillus Subtilis and its Closest Relatvies: from Genes to Cells., ed. by A. L. Sonenshein, J. A. Hoch and R. Losick., pp. 337-355. American Society for Microbiology Press, Washington, DC, USA.
20 Soliday, C. L. and Kolattukudy, P. E. 1983. Primary structure of the active site region of fungal cutinase, an enzyme involved in phytopathogenesis. Biochem Biophys Res Commun. 114:1017-1022.   DOI   ScienceOn
21 Staley, J. T., Bryant, M. P., Pfennig, N. and Holt, J. G. 1989. Bergey's Manual of Systematic Bacteriology, Vol. 3, ed. by Williams and Wilkins, Baltimore.
22 Thierry, R. 1999. Silver staining of 2-D electrophoresis gels. Methods Mol. Biol. 112:297-311.
23 Tjalsma, H., Antelmann, H., Jongbloed, J. D., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J. Y., Westers, H., Zanen, G., Quax, W. J., Kuipers, O. P., Bron, S., Hecker, M., van Dijl, J. M. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol. Mol. Biol. Rev. 68:207-233.   DOI   ScienceOn
24 Um, H. J., Seo, H. S., Min, J. H., Rhee, S. K., Cho, T. J., Kim, Y. H. and Lee, J. W. 2007. Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res. 7:1035-1045.   DOI   ScienceOn
25 Wilhelm, S. 1993. The role of cutinase in fungal pathogenicity. Trends Microbiol. 1:69-71.   DOI   ScienceOn
26 Williams, S. T., Sharpe, M. E. and Holt, J. G. 1989. Bergey's Manual of Systematic Bacteriology, Vol. 4. ed. by Williams and Wilkins, Baltimore.
27 Lin, T. S. and Kolattukudy, P. E. 1980. Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N terminus. Eur. J. Biochem. 106:341-351.   DOI   ScienceOn
28 Vilain, S. and Brozel, V. S. 2006. Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J. Proteome Res. 5:1924-1930.   DOI   ScienceOn
29 Voigt, B., Hoi le, T., Jurgen, B., Albrecht, D., Ehrenreich, A., Veith, B., Evers, S., Maurer, K. H., Hecker, M. and Schweder, T. 2007. The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7:413-423.   DOI   ScienceOn
30 Honjo, M., Nakayama, A., Fukazawa, K., Kawamura, K., Ando, K., Hori, M. and Furutani, Y. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172:1783-1790.   DOI
31 Majoul, T., Bancel, E., Triboi, E., Hamida, J. B. and Branlard, G. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics 3:175-183.   DOI   ScienceOn
32 Poulsen, K. R., Sorensen, T. K., Duroux, L., Petersen, E. I., Petersen, S. B. and Wimmer, R. 2006. The interaction of Fusarium solani pisi cutinase with long chain spin label esters. Biochemistry 45:9163-9171.   DOI   ScienceOn
33 Schaad, N. W. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria 2nd Edition.
34 Shimao, M. 2001. Biodegradation of plastics. Curr. Opin. Biotechnol. 12:242-247.   DOI   ScienceOn
35 Petersen, M. T. N., Martel, P., Petersen, E. I., Drablos, F. and Pertersen, S. B. 1997. Surface and electrostatics of cutinases. Methods in enzymology Vol. 284, ed. by B. Rubin and E.A. Dennis, pp. 130-154. Academics, New York.
36 Gerard, H. C., Fett, W. F., Osman, S. F. and Moreau, R. A. 1993. Evaluation of cutinase activity of various industrial lipases. Biotechnol. Appl. Biochem. 17:181-189.
37 Poulose, A. J. and Kolattukudy, P. 1988. Enzymes as agricultural chemical adjuvants. European Patent 0,272,002 A1.
38 Masayama, A., Kuwana, R., Takamatsu, H., Hemmi, H., Yoshimura, T., Watabe, K. and Moriyama, R. 2007. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J. Bacteriol. 189:2369-2375.   DOI   ScienceOn
39 Flipsen, J. A. C., Appel, A. C. M., Van der Hijden, H. T. W. M. and Verrips, C.T. 1998. Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process. Enzyme Micro. Technol. 23:274-280.   DOI   ScienceOn
40 Hirose, I., Sano, K., Shioda, I., Kumano, M., Nakamura, K. and Yamane, K. 2000. Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Electrophoresis 146:65-75.
41 Kim, Y. H., Lee, J., Ahn, J. Y., Gu, M. B. and Moon, S. H. 2002. Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl. Environ. Microbiol. 68:4684-4688.   DOI   ScienceOn
42 Kim, Y. H., Lee, J. and Moon, S. H. 2003. Uniqueness of microbial cutinases in hydrolysis of p-nitrophenyl esters. J. Microbiol. Biotechnol. 13:57-63.
43 Kolattukudy, P. E. 1984. Cutinase from fungi and pollen. In: Lipase, ed. by B. Borgstrom and T. Brockman, pp. 471-504. Elsevier, Amsterdam.
44 Martinez, C., De Geus, P., Lauwereys, M., Matthysens, G. and Cambillau, C. 1992. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615-618.   DOI   ScienceOn
45 Cristina, M. L. C., Maria, R. A. B. and Joaquim, M. S. C. 1998. Cutinase structure, function and biocatalytic applications. Electronic J. Biotechnol. 1:160-173.   DOI
46 Cristina, M. L. C., Maria, R. A. B. and Joaquim, M. S. C. 1999. Cutinase: from molecular level to bioprocess development. Biotechnol. Bioeng. 66:17-34.   DOI   ScienceOn
47 Eggert, T., van Pouderoyen, G., Dijkstra, B. W. and Jaeger, K. E. 2001. Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett. 502:38-92.
48 Martin-Verstraete, I., Deutscher, J., Galinier, A. 1999. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J. Bacteriol. 181:2966-2969.